These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26067985)

  • 21. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of electrode size and geometry on electrochemical experiments with combined SECM-SFM probes.
    Pust SE; Salomo M; Oesterschulze E; Wittstock G
    Nanotechnology; 2010 Mar; 21(10):105709. PubMed ID: 20160335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.
    Smith RW; Yang BJ; Huang WD
    Ann N Y Acad Sci; 2004 Nov; 1027():110-28. PubMed ID: 15644350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scanning electrochemical microscopy with a band microelectrode: theory and application.
    Combellas C; Fuchs A; Kanoufi F
    Anal Chem; 2004 Jul; 76(13):3612-8. PubMed ID: 15228332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements.
    Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR
    Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of mass transport in ionic liquids: a rotating disk electrode approach.
    Giaccherini A; Al Khatib M; Cinotti S; Piciollo E; Berretti E; Giusti P; Innocenti M; Montegrossi G; Lavacchi A
    Sci Rep; 2020 Aug; 10(1):13433. PubMed ID: 32778683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clarifying the mechanism of reverse structuring during electrodeposition in magnetic gradient fields.
    Tschulik K; Cierpka C; Mutschke G; Gebert A; Schultz L; Uhlemann M
    Anal Chem; 2012 Mar; 84(5):2328-34. PubMed ID: 22360304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophoretic migration and particle collisions in scanning electrochemical microscopy.
    Boika A; Bard AJ
    Anal Chem; 2014 Dec; 86(23):11666-72. PubMed ID: 25369139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
    Rassaei L; French RW; Compton RG; Marken F
    Analyst; 2009 May; 134(5):887-92. PubMed ID: 19381380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simplifying the evaluation of graphene modified electrode performance using rotating disk electrode voltammetry.
    Guo SX; Zhao SF; Bond AM; Zhang J
    Langmuir; 2012 Mar; 28(11):5275-85. PubMed ID: 22352793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism.
    Sánchez-Sánchez CM; Rodríguez-López J; Bard AJ
    Anal Chem; 2008 May; 80(9):3254-60. PubMed ID: 18355084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence confocal laser scanning microscopy as a probe of pH gradients in electrode reactions and surface activity.
    Rudd NC; Cannan S; Bitziou E; Ciani I; Whitworth AL; Unwin PR
    Anal Chem; 2005 Oct; 77(19):6205-17. PubMed ID: 16194080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic field effects on electrochemical metal depositions.
    Bund A; Ispas A; Mutschke G
    Sci Technol Adv Mater; 2008 Apr; 9(2):024208. PubMed ID: 27877959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport.
    Gao G; Vecitis CD
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6096-103. PubMed ID: 23106549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Electrode Shape and Flow Conditions on the Electrochemical Detection with Band Microelectrodes.
    Al Khatib M; Bellini M; Pogni R; Giaccherini A; Innocenti M; Vizza F; Lavacchi A
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments.
    Tel-Vered R; Walsh DA; Mehrgardi MA; Bard AJ
    Anal Chem; 2006 Oct; 78(19):6959-66. PubMed ID: 17007521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dielectrophoretic and electrothermal effects at alternating current heated disk microelectrodes.
    Boika A; Baranski AS
    Anal Chem; 2008 Oct; 80(19):7392-400. PubMed ID: 18771275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, applications, and digital simulation of carbon interdigitated array electrodes.
    Liu F; Kolesov G; Parkinson BA
    Anal Chem; 2014 Aug; 86(15):7391-8. PubMed ID: 24998907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane.
    Skolotneva E; Cretin M; Mareev S
    Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34200417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.