BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2606803)

  • 1. Rapid force production in the cochlea.
    Mountain DC; Hubbard AE
    Hear Res; 1989 Nov; 42(2-3):195-202. PubMed ID: 2606803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 4-aminopyridine on electrically evoked cochlear emissions and mechano-transduction in guinea pig outer hair cells.
    Kirk DL
    Hear Res; 2001 Nov; 161(1-2):99-112. PubMed ID: 11744286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear electrically evoked emissions modulated by mechanical transduction channels.
    Yates GK; Kirk DL
    J Neurosci; 1998 Mar; 18(6):1996-2003. PubMed ID: 9482786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea?
    Liberman MC; Zuo J; Guinan JJ
    J Acoust Soc Am; 2004 Sep; 116(3):1649-55. PubMed ID: 15478431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP in endolymph enhances electrically-evoked oto-acoustic emissions from the guinea pig cochlea.
    Kirk DL; Yates GK
    Neurosci Lett; 1998 Jul; 250(3):149-52. PubMed ID: 9708854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC; Versnel H; Prijs VF; Klis SF
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evoked acoustic emissions and cochlear microphonics in the mustache bat, Pteronotus parnellii.
    Kössl M; Vater M
    Hear Res; 1985; 19(2):157-70. PubMed ID: 4055535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haircell forward and reverse transduction: differential suppression and enhancement.
    Hubbard AE; Mountain DC
    Hear Res; 1990 Jan; 43(2-3):269-72. PubMed ID: 2312418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cochlear responses after sound exposure.
    Szymko YM; Zwislocki JJ; Hertig L
    Hear Res; 1997 Aug; 110(1-2):164-78. PubMed ID: 9282899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL
    J Acoust Soc Am; 2012 Nov; 132(5):3351-62. PubMed ID: 23145616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti.
    Zheng J; Deo N; Zou Y; Grosh K; Nuttall AL
    J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization.
    Russell IJ; Kössl M
    Proc Biol Sci; 1992 Feb; 247(1319):97-105. PubMed ID: 1349187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of intravenous injection of aspirin on the cochlea].
    Kumagai M
    Hokkaido Igaku Zasshi; 1992 Mar; 67(2):216-33. PubMed ID: 1597302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spectral content of the cochlear microphonic measured in scala media of the guinea pig cochlea.
    Hubbard AE; Mountain DC; Geisler CD
    J Acoust Soc Am; 1979 Aug; 66(2):415-30. PubMed ID: 512203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of electrically evoked oto-acoustic emissions associated with low-frequency stimulus bias of the basilar membrane towards scala vestibuli.
    Kirk DL; Yates GK
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1544-54. PubMed ID: 9745737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically evoked otoacoustic emissions from the chicken ear.
    Chen L; Sun W; Salvi RJ
    Hear Res; 2001 Nov; 161(1-2):54-64. PubMed ID: 11744281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acoustic trauma on acoustic enhancement of electrically evoked otoacoustic emissions.
    Nakajima HH; Hubbard AE; Mountain DC
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2603-14. PubMed ID: 10830383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of suppressive interactions in the cochlear microphonic response to wide-band clicks.
    Legouix JP; Avan P
    Hear Res; 1985; 19(3):227-34. PubMed ID: 4066521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.