These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2606803)

  • 21. [A case report of spontaneous otoacoustic emissions].
    Paaske PB; Møller K
    Ugeskr Laeger; 1989 Oct; 151(42):2735-6. PubMed ID: 2815399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustic modulation of electrically evoked otoacoustic emission in chickens.
    Sun W; Chen L; Salvi RJ
    Audiol Neurootol; 2002; 7(4):206-13. PubMed ID: 12097720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse.
    Xia A; Visosky AM; Cho JH; Tsai MJ; Pereira FA; Oghalai JS
    J Assoc Res Otolaryngol; 2007 Dec; 8(4):447-63. PubMed ID: 17701252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability.
    Patuzzi RB; Thompson ML
    Hear Res; 1991 Jul; 54(1):45-58. PubMed ID: 1917716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial overlap of combined electroacoustic stimulation determines the electrically evoked response in the guinea pig cochlea.
    Stronks HC; Prijs VF; Chimona TS; Grolman W; Klis SF
    Otol Neurotol; 2012 Dec; 33(9):1535-42. PubMed ID: 23099336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Oto-acoustic emissions. I. Evoked oto-emissions: a new technic of functional study of the cochlea].
    Bonfils P; Uziel A; Pujol R
    Ann Otolaryngol Chir Cervicofac; 1987; 104(5):353-60. PubMed ID: 3688741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of basilar membrane vibrations and evaluation of the cochlear condition.
    Khanna SM; Leonard DG
    Hear Res; 1986; 23(1):37-53. PubMed ID: 3733551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relation of receptor potentials of cochlear hair cells to spike discharges of cochlear neurons.
    Weiss TF
    Annu Rev Physiol; 1984; 46():247-59. PubMed ID: 6370108
    [No Abstract]   [Full Text] [Related]  

  • 29. Electrically evoked otoacoustic emissions from the apical turns of the gerbil cochlea.
    Nakajima HH; Olson ES; Mountain DC; Hubbard AE
    J Acoust Soc Am; 1994 Aug; 96(2 Pt 1):786-94. PubMed ID: 7930080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrically evoked basilar membrane motion.
    Xue S; Mountain DC; Hubbard AE
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3030-41. PubMed ID: 7759643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Speech perception and otoacoustic emissions by pre-processing sound in the inner ear].
    Plinkert PK; Zenner HP
    HNO; 1992 Apr; 40(4):111-22. PubMed ID: 1318292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions.
    Kirk DL; Yates GK
    Audiol Neurootol; 1998; 3(1):21-39. PubMed ID: 9502539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of current waveforms for the electrical stimulation of residual low frequency hearing.
    McAnally KI; Brown M; Clark GM
    Acta Otolaryngol; 1997 Nov; 117(6):831-5. PubMed ID: 9442822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss.
    Wang Y; Steele CR; Puria S
    Sci Rep; 2016 Jan; 6():19475. PubMed ID: 26792556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics.
    Mountain DC
    Science; 1980 Oct; 210(4465):71-2. PubMed ID: 7414321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products.
    Kujawa SG; Fallon M; Bobbin RP
    Hear Res; 1992 Dec; 64(1):73-80. PubMed ID: 1490903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane cholesterol modulates cochlear electromechanics.
    Brownell WE; Jacob S; Hakizimana P; Ulfendahl M; Fridberger A
    Pflugers Arch; 2011 Jun; 461(6):677-86. PubMed ID: 21373862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry.
    Mammano F; Ashmore JF
    Nature; 1993 Oct; 365(6449):838-41. PubMed ID: 8413667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short latency vestibular potentials evoked by electrical round window stimulation in the guinea pig.
    Bordure P; Desmadryl G; Uziel A; Sans A
    Electroencephalogr Clin Neurophysiol; 1989 Nov; 73(5):464-9. PubMed ID: 2479525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound.
    Klis JF; Smoorenburg GF
    Hear Res; 1985; 20(1):15-23. PubMed ID: 4077742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.