These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 26068088)
1. Separation Speed and Power in Isocratic Liquid Chromatography: Loss in Performance of Poppe vs Knox-Saleem Optimization. Matula AJ; Carr PW Anal Chem; 2015 Jul; 87(13):6578-83. PubMed ID: 26068088 [TBL] [Abstract][Full Text] [Related]
2. Effect of pressure, particle size, and time on optimizing performance in liquid chromatography. Carr PW; Wang X; Stoll DR Anal Chem; 2009 Jul; 81(13):5342-53. PubMed ID: 19505090 [TBL] [Abstract][Full Text] [Related]
3. Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography. Groskreutz SR; Weber SG Anal Chem; 2016 Dec; 88(23):11742-11749. PubMed ID: 27790917 [TBL] [Abstract][Full Text] [Related]
4. Facts and myths about columns packed with sub-3 microm and sub-2 microm particles. Fekete S; Ganzler K; Fekete J J Pharm Biomed Anal; 2010 Jan; 51(1):56-64. PubMed ID: 19726154 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of ultra performance liquid chromatography. Part I. Possibilities and limitations. de Villiers A; Lestremau F; Szucs R; Gélébart S; David F; Sandra P J Chromatogr A; 2006 Sep; 1127(1-2):60-9. PubMed ID: 16797562 [TBL] [Abstract][Full Text] [Related]
6. Performance limits and kinetic optimization of parallel and serially connected multi-column systems spanning a wide range of efficiencies for liquid chromatography. Cabooter D; Desmet G J Chromatogr A; 2012 Jan; 1219():114-27. PubMed ID: 22153284 [TBL] [Abstract][Full Text] [Related]
7. A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography. Wang X; Stoll DR; Carr PW; Schoenmakers PJ J Chromatogr A; 2006 Sep; 1125(2):177-81. PubMed ID: 16777118 [TBL] [Abstract][Full Text] [Related]
8. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of new shell-type, sub-2 micron fully porous and monolith stationary phases, focusing on mass-transfer resistance. Oláh E; Fekete S; Fekete J; Ganzler K J Chromatogr A; 2010 Jun; 1217(23):3642-53. PubMed ID: 20409553 [TBL] [Abstract][Full Text] [Related]
10. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation. Guillarme D; Nguyen DT; Rudaz S; Veuthey JL Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188 [TBL] [Abstract][Full Text] [Related]
11. A virtual-modeling and multivariate-optimization examination of HPLC parameter interactions and opportunities for saving analysis time. Chester TL; Teremi SO J Chromatogr A; 2005 Nov; 1096(1-2):16-27. PubMed ID: 16301066 [TBL] [Abstract][Full Text] [Related]
12. On the optimization of the shell thickness of superficially porous particles. Horváth K; Gritti F; Fairchild JN; Guiochon G J Chromatogr A; 2010 Oct; 1217(41):6373-81. PubMed ID: 20828704 [TBL] [Abstract][Full Text] [Related]
13. Separation and identification of phenolic compounds in canned artichoke by LC/DAD/ESI-MS using core-shell C18 column: a comparative study. Wu J; Qian Y; Mao P; Chen L; Lu Y; Wang H J Chromatogr B Analyt Technol Biomed Life Sci; 2013 May; 927():173-80. PubMed ID: 23266111 [TBL] [Abstract][Full Text] [Related]
14. Determination of suitable column geometries by means of van Deemter and kinetic plots for isothermal and isocratic method development in high-temperature liquid chromatography isotope ratio mass spectrometry. Ermisch P; Wiese S; Weber H; Teutenberg T Anal Chem; 2012 Feb; 84(3):1565-71. PubMed ID: 22264167 [TBL] [Abstract][Full Text] [Related]
15. Kinetic optimisation of the reversed phase liquid chromatographic separation of proanthocyanidins on sub-2 μm and superficially porous phases. Kalili KM; Cabooter D; Desmet G; de Villiers A J Chromatogr A; 2012 May; 1236():63-76. PubMed ID: 22444426 [TBL] [Abstract][Full Text] [Related]
16. How to generate peak capacity in column liquid chromatography. The Halász nomograms revised. Meyer VR J Chromatogr A; 2008 Apr; 1187(1-2):138-44. PubMed ID: 18302961 [TBL] [Abstract][Full Text] [Related]
17. Chromatographic behaviour and comparison of column packed with sub-2 microm stationary phases in liquid chromatography. Nguyen DT; Guillarme D; Rudaz S; Veuthey JL J Chromatogr A; 2006 Sep; 1128(1-2):105-13. PubMed ID: 16846612 [TBL] [Abstract][Full Text] [Related]
18. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. Grand-Guillaume Perrenoud A; Veuthey JL; Guillarme D J Chromatogr A; 2012 Nov; 1266():158-67. PubMed ID: 23092872 [TBL] [Abstract][Full Text] [Related]
19. Kinetic performance comparison of fully and superficially porous particles with a particle size of 5 µm: intrinsic evaluation and application to the impurity analysis of griseofulvin. Kahsay G; Broeckhoven K; Adams E; Desmet G; Cabooter D Talanta; 2014 May; 122():122-9. PubMed ID: 24720972 [TBL] [Abstract][Full Text] [Related]
20. Method to predict and compare the influence of the particle size on the isocratic peak capacity of high-performance liquid chromatography columns. Cabooter D; de Villiers A; Clicq D; Szucs R; Sandra P; Desmet G J Chromatogr A; 2007 Apr; 1147(2):183-91. PubMed ID: 17339038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]