BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26068099)

  • 1. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.
    Ding P; McFarland KA; Jin S; Tong G; Duan B; Yang A; Hughes TR; Liu J; Dove SL; Navarre WW; Xia B
    PLoS Pathog; 2015 Jun; 11(6):e1004967. PubMed ID: 26068099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers.
    Duan B; Ding P; Navarre WW; Liu J; Xia B
    Mol Biol Evol; 2021 Sep; 38(10):4135-4148. PubMed ID: 34003286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H-NS Family Members MvaT and MvaU Regulate the Pseudomonas aeruginosa Type III Secretion System.
    Williams McMackin EA; Marsden AE; Yahr TL
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30782629
    [No Abstract]   [Full Text] [Related]  

  • 4. The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution.
    Navarre WW
    Adv Microb Physiol; 2016; 69():157-186. PubMed ID: 27720010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silencing of foreign DNA in bacteria.
    Ali SS; Xia B; Liu J; Navarre WW
    Curr Opin Microbiol; 2012 Apr; 15(2):175-81. PubMed ID: 22265250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model.
    Wiechert J; Filipchyk A; Hünnefeld M; Gätgens C; Brehm J; Heermann R; Frunzke J
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H-NS-like proteins in Pseudomonas aeruginosa coordinately silence intragenic transcription.
    Lippa AM; Gebhardt MJ; Dove SL
    Mol Microbiol; 2021 Jun; 115(6):1138-1151. PubMed ID: 33245158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of phase-variable cup gene expression by H-NS-like proteins in Pseudomonas aeruginosa.
    Vallet-Gely I; Donovan KE; Fang R; Joung JK; Dove SL
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):11082-7. PubMed ID: 16043713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-NS family members function coordinately in an opportunistic pathogen.
    Castang S; McManus HR; Turner KH; Dove SL
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18947-52. PubMed ID: 19028873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins.
    Gordon BR; Li Y; Cote A; Weirauch MT; Ding P; Hughes TR; Navarre WW; Xia B; Liu J
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10690-5. PubMed ID: 21673140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How bacterial xenogeneic silencer rok distinguishes foreign from self DNA in its resident genome.
    Duan B; Ding P; Hughes TR; Navarre WW; Liu J; Xia B
    Nucleic Acids Res; 2018 Nov; 46(19):10514-10529. PubMed ID: 30252102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands.
    Piña-Iturbe A; Suazo ID; Hoppe-Elsholz G; Ulloa-Allendes D; González PA; Kalergis AM; Bueno SM
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32013150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The convergent xenogeneic silencer MucR predisposes α-proteobacteria to integrate AT-rich symbiosis genes.
    Shi WT; Zhang B; Li ML; Liu KH; Jiao J; Tian CF
    Nucleic Acids Res; 2022 Aug; 50(15):8580-8598. PubMed ID: 36007892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel anti-repression mechanism of H-NS proteins by a phage protein.
    Bdira FB; Erkelens AM; Qin L; Volkov AN; Lippa AM; Bowring N; Boyle AL; Ubbink M; Dove SL; Dame RT
    Nucleic Acids Res; 2021 Oct; 49(18):10770-10784. PubMed ID: 34520554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-order oligomerization is required for the function of the H-NS family member MvaT in Pseudomonas aeruginosa.
    Castang S; Dove SL
    Mol Microbiol; 2010 Nov; 78(4):916-31. PubMed ID: 20815825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher order oligomerization is required for H-NS family member MvaT to form gene-silencing nucleoprotein filament.
    Winardhi RS; Fu W; Castang S; Li Y; Dove SL; Yan J
    Nucleic Acids Res; 2012 Oct; 40(18):8942-52. PubMed ID: 22798496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1.
    Li C; Wally H; Miller SJ; Lu CD
    J Bacteriol; 2009 Oct; 191(20):6211-8. PubMed ID: 19684136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basis for the essentiality of H-NS family members in Pseudomonas aeruginosa.
    Castang S; Dove SL
    J Bacteriol; 2012 Sep; 194(18):5101-9. PubMed ID: 22821971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MvaT binds to the P
    Yin L; Liu Q; Pan X; Lv C; Bai Y; Bai F; Cheng Z; Wu W; Ha UH; Jin Y
    Front Cell Infect Microbiol; 2023; 13():1267748. PubMed ID: 38029243
    [No Abstract]   [Full Text] [Related]  

  • 20. The Pseudomonas aeruginosa global regulator MvaT specifically binds to the ptxS upstream region and enhances ptxS expression.
    Westfall LW; Luna AM; Francisco MS; Diggle SP; Worrall KE; Williams P; Cámara M; Hamood AN
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3797-3806. PubMed ID: 15528665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.