BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26068180)

  • 1. Driving biomass breakdown through engineered cellulosomes.
    Gilmore SP; Henske JK; O'Malley MA
    Bioengineered; 2015; 6(4):204-8. PubMed ID: 26068180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cellulosome--a treasure-trove for biotechnology.
    Bayer EA; Morag E; Lamed R
    Trends Biotechnol; 1994 Sep; 12(9):379-86. PubMed ID: 7765191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulosome Localization Patterns Vary across Life Stages of Anaerobic Fungi.
    Lillington SP; Chrisler W; Haitjema CH; Gilmore SP; Smallwood CR; Shutthanandan V; Evans JE; O'Malley MA
    mBio; 2021 Jun; 12(3):e0083221. PubMed ID: 34061594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
    Moraïs S; Morag E; Barak Y; Goldman D; Hadar Y; Lamed R; Shoham Y; Wilson DB; Bayer EA
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for Discovery of Novel Cellulosomal Cellulases Using Genomics and Biochemical Tools.
    Ben-David Y; Dassa B; Bensoussan L; Bayer EA; Moraïs S
    Methods Mol Biol; 2018; 1796():67-84. PubMed ID: 29856047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production.
    Bhattacharya AS; Bhattacharya A; Pletschke BI
    Biotechnol Lett; 2015 Jun; 37(6):1117-29. PubMed ID: 25656474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum.
    Ravachol J; Borne R; Tardif C; de Philip P; Fierobe HP
    J Biol Chem; 2014 Mar; 289(11):7335-48. PubMed ID: 24451379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of cellulases and cellulosomes for cellulosic waste management.
    Bayer EA; Lamed R; Himmel ME
    Curr Opin Biotechnol; 2007 Jun; 18(3):237-45. PubMed ID: 17462879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods in Enzymology. Preface.
    Gilbert HJ
    Methods Enzymol; 2012; 510():xxi-xxii. PubMed ID: 22608742
    [No Abstract]   [Full Text] [Related]  

  • 13. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.
    Chen C; Cui Z; Song X; Liu YJ; Cui Q; Feng Y
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2203-12. PubMed ID: 26521249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation Between Size and Activity Enhancement of Recombinantly Assembled Cellulosomes.
    Chen L; Ge X
    Appl Biochem Biotechnol; 2018 Dec; 186(4):937-948. PubMed ID: 29797297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose, cellulases and cellulosomes.
    Bayer EA; Chanzy H; Lamed R; Shoham Y
    Curr Opin Struct Biol; 1998 Oct; 8(5):548-57. PubMed ID: 9818257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis.
    Kahn A; Moraïs S; Chung D; Sarai NS; Hengge NN; Kahn A; Himmel ME; Bayer EA; Bomble YJ
    FEBS J; 2020 Oct; 287(20):4370-4388. PubMed ID: 32064769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome.
    Davidi L; Moraïs S; Artzi L; Knop D; Hadar Y; Arfi Y; Bayer EA
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10854-9. PubMed ID: 27621442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing chimeric enzymes inspired by fungal cellulosomes.
    Gilmore SP; Lillington SP; Haitjema CH; de Groot R; O'Malley MA
    Synth Syst Biotechnol; 2020 Mar; 5(1):23-32. PubMed ID: 32083193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turning a potent family-9 free cellulase into an operational cellulosomal component and vice versa.
    Vita N; Borne R; Perret S; de Philip P; Fierobe HP
    FEBS J; 2019 Sep; 286(17):3359-3373. PubMed ID: 31004451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.