These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2606835)

  • 41. Influences of lung mechanoreceptors and carotid chemoreceptors on the response of respiratory muscle activity to tracheal occlusion.
    Matsumoto S; Kanno T; Yamasaki M; Nagayama T; Shimizu T
    Jpn J Physiol; 1991; 41(1):101-15. PubMed ID: 1857015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impaired upper airway integrity by residual neuromuscular blockade: increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure.
    Herbstreit F; Peters J; Eikermann M
    Anesthesiology; 2009 Jun; 110(6):1253-60. PubMed ID: 19417617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of upper airway negative pressure on inspiratory drive during sleep.
    Eastwood PR; Curran AK; Smith CA; Dempsey JA
    J Appl Physiol (1985); 1998 Mar; 84(3):1063-75. PubMed ID: 9480970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship of thoracic volume and airway occlusion pressure: muscular effects.
    Eldridge FL; Vaughn KZ
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Aug; 43(2):312-21. PubMed ID: 893290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The motor pattern of tracheobronchial cough is affected by inspiratory resistance and expiratory occlusion - The evidence for volume feedback during cough expiration.
    Poliacek I; Kotmanova Z; Veternik M; Pitts T; Martvon L; Misek J; Jakus J; Simera M
    Respir Physiol Neurobiol; 2019 Mar; 261():9-14. PubMed ID: 30583067
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genioglossus response to airway occlusion in apneic versus nonapneic infants.
    Gauda EB; Miller MJ; Carlo WA; Difiore JM; Johnsen DC; Martin RJ
    Pediatr Res; 1987 Dec; 22(6):683-7. PubMed ID: 3431951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Costal and crural diaphragm in early inspiration: free breathing and occlusion.
    Easton PA; Fitting JW; Grassino AE
    J Appl Physiol (1985); 1987 Oct; 63(4):1622-8. PubMed ID: 3693199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluctuation in timing of upper airway and chest wall inspiratory muscle activity in obstructive sleep apnea.
    Hudgel DW; Harasick T
    J Appl Physiol (1985); 1990 Aug; 69(2):443-50. PubMed ID: 2228853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharyngeal airway-stabilizing function of sternohyoid and sternothyroid muscles in the rabbit.
    Roberts JL; Reed WR; Thach BT
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1790-5. PubMed ID: 6511553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decrease in lung volume-related feedback enhances laryngeal reflexes to negative pressure.
    Zhang S; Mathew OP
    J Appl Physiol (1985); 1992 Sep; 73(3):832-6. PubMed ID: 1400045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in orofacial muscle activity in response to changes in respiratory resistance.
    Song HG; Pae EK
    Am J Orthod Dentofacial Orthop; 2001 Apr; 119(4):436-42. PubMed ID: 11298317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of negative pressure applied to the upper airway on the breathing pattern in unanesthetized awake dogs.
    McNamara SG; Issa FG; Szeto E; Sullivan CE
    Respir Physiol; 1986 Sep; 65(3):315-29. PubMed ID: 3786970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interactive effects of CO2 and upper airway negative pressure on breathing pattern.
    van Lunteren E
    J Appl Physiol (1985); 1987 Jul; 63(1):229-37. PubMed ID: 3114216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of epiglottic position in dogs: role of negative upper airway pressure.
    Amis TC; O'Neill N; Van der Touw T; Brancatisano A
    Respir Physiol; 1996 Sep; 105(3):187-94. PubMed ID: 8931178
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laryngeal and pump muscle activities during CO2 breathing in neonates.
    Wozniak JA; Hutchison AA; Kosch PC
    J Appl Physiol (1985); 1993 Jul; 75(1):416-23. PubMed ID: 8376294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phasic volume-related feedback on upper airway muscle activity.
    van Lunteren E; Strohl KP; Parker DM; Bruce EN; Van de Graaff WB; Cherniack NS
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Mar; 56(3):730-6. PubMed ID: 6706778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical effects of pharyngeal constrictor activation on pharyngeal airway function.
    Kuna ST; Vanoye CR
    J Appl Physiol (1985); 1999 Jan; 86(1):411-7. PubMed ID: 9887155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of pharyngeal lubrication on the opening of obstructed upper airway.
    Miki H; Hida W; Kikuchi Y; Chonan T; Satoh M; Iwase N; Takishima T
    J Appl Physiol (1985); 1992 Jun; 72(6):2311-6. PubMed ID: 1629086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiological definition of upper airway obstructions in mouse model for Rett syndrome.
    Voituron N; Menuet C; Dutschmann M; Hilaire G
    Respir Physiol Neurobiol; 2010 Sep; 173(2):146-56. PubMed ID: 20659592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of sleep-induced increases in upper airway resistance on respiratory muscle activity.
    Henke KG; Dempsey JA; Badr MS; Kowitz JM; Skatrud JB
    J Appl Physiol (1985); 1991 Jan; 70(1):158-68. PubMed ID: 2010372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.