BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26068375)

  • 1. Interfacial Hydrogen Atom Transfer by nanohybrids based on Humic Acid Like Polycondensates.
    Bletsa E; Stathi P; Dimos K; Louloudi M; Deligiannakis Y
    J Colloid Interface Sci; 2015 Oct; 455():163-71. PubMed ID: 26068375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid.
    Deligiannakis Y; Sotiriou GA; Pratsinis SE
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6609-17. PubMed ID: 23121088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO
    Theofanous A; Sarli I; Fragou F; Bletsa E; Deligiannakis Y; Louloudi M
    Langmuir; 2022 Oct; 38(40):12333-12345. PubMed ID: 36165696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Kinetic Approach of DPPH Free Radical Assay of Ferulate-Based Protic Ionic Liquids (PILs).
    Ahmad NA; Jumbri K; Ramli A; Abd Ghani N; Ahmad H; Lim JW
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30563037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the cyto-genotoxic potential of model zinc oxide nanoparticles in the presence of humic-acid-like-polycondensate (HALP) and the leonardite HA (LHA).
    Efthimiou I; Georgiou Y; Vlastos D; Dailianis S; Deligiannakis Y
    Sci Total Environ; 2020 Jun; 721():137625. PubMed ID: 32169638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins.
    Estévez L; Otero N; Mosquera RA
    J Phys Chem B; 2010 Jul; 114(29):9706-12. PubMed ID: 20608689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical.
    Goupy P; Dufour C; Loonis M; Dangles O
    J Agric Food Chem; 2003 Jan; 51(3):615-22. PubMed ID: 12537431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants.
    Boudier A; Tournebize J; Bartosz G; El Hani S; Bengueddour R; Sapin-Minet A; Leroy P
    Anal Chim Acta; 2012 Jan; 711():97-106. PubMed ID: 22152802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant capacity and phenolic content of four Myrtaceae plants of the south of Brazil.
    Salvador MJ; de Lourenço CC; Andreazza NL; Pascoal AC; Stefanello ME
    Nat Prod Commun; 2011 Jul; 6(7):977-82. PubMed ID: 21834237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approach to develop a standardized TLC-DPPH• test for assessing free radical scavenging properties of selected phenolic compounds.
    Cieśla Ł; Kryszeń J; Stochmal A; Oleszek W; Waksmundzka-Hajnos M
    J Pharm Biomed Anal; 2012 Nov; 70():126-35. PubMed ID: 22749343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release.
    Hu H; Nie L; Feng S; Suo J
    Pharmazie; 2013 Jun; 68(6):401-5. PubMed ID: 23875245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer.
    Musialik M; Litwinienko G
    Org Lett; 2005 Oct; 7(22):4951-4. PubMed ID: 16235930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing antioxidant effectiveness of natural and synthetic free radical scavengers in thermally-oxidized lard using DPPH method.
    Yeo JD; Jeong MK; Park CU; Lee J
    J Food Sci; 2010 Apr; 75(3):C258-62. PubMed ID: 20492276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A humic-acid-like polycondensate produced with no use of catalyst.
    Giannakopoulos E; Drosos M; Deligiannakis Y
    J Colloid Interface Sci; 2009 Aug; 336(1):59-66. PubMed ID: 19394625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radical scavenging activity of conjugated linoleic acid as single or mixed isomers.
    Ali YM; Kadir AA; Ahmad Z; Yaakub H; Zakaria ZA; Abdullah MN
    Pharm Biol; 2012 Jun; 50(6):712-9. PubMed ID: 22181061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidative effects and percutaneous absorption of five polyphenols.
    Alonso C; Rubio L; Touriño S; Martí M; Barba C; Fernández-Campos F; Coderch L; Parra JL
    Free Radic Biol Med; 2014 Oct; 75():149-55. PubMed ID: 25041725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical scavenging by natural polyphenols: atom versus electron transfer.
    Di Meo F; Lemaur V; Cornil J; Lazzaroni R; Duroux JL; Olivier Y; Trouillas P
    J Phys Chem A; 2013 Mar; 117(10):2082-92. PubMed ID: 23418927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.
    Praetorius A; Labille J; Scheringer M; Thill A; Hungerbühler K; Bottero JY
    Environ Sci Technol; 2014 Sep; 48(18):10690-8. PubMed ID: 25127331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maclurin protects against hydroxyl radical-induced damages to mesenchymal stem cells: antioxidant evaluation and mechanistic insight.
    Li X; Gao Y; Li F; Liang A; Xu Z; Bai Y; Mai W; Han L; Chen D
    Chem Biol Interact; 2014 Aug; 219():221-8. PubMed ID: 24973644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties.
    Suresh D; Shobharani RM; Nethravathi PC; Pavan Kumar MA; Nagabhushana H; Sharma SC
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():128-34. PubMed ID: 25668693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.