These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26068406)

  • 41. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis.
    Goodlett DR; Yi EC
    Funct Integr Genomics; 2002 Sep; 2(4-5):138-53. PubMed ID: 12192588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Challenging World of Biofilm Physiology.
    Donné J; Dewilde S
    Adv Microb Physiol; 2015; 67():235-92. PubMed ID: 26616519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global quantitative proteomics reveals novel factors in the ecdysone signaling pathway in Drosophila melanogaster.
    Sap KA; Bezstarosti K; Dekkers DH; van den Hout M; van Ijcken W; Rijkers E; Demmers JA
    Proteomics; 2015 Feb; 15(4):725-38. PubMed ID: 25403936
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Linking transcriptomics and proteomics in spermatogenesis.
    Chalmel F; Rolland AD
    Reproduction; 2015 Nov; 150(5):R149-57. PubMed ID: 26416010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Teaching molecular genetics: Chapter 3--Proteomics in nephrology.
    Groenen PJ; van den Heuvel LP
    Pediatr Nephrol; 2006 May; 21(5):611-8. PubMed ID: 16572342
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global analysis of bacterial membrane proteins and their modifications.
    Soufi B; Macek B
    Int J Med Microbiol; 2015 Feb; 305(2):203-8. PubMed ID: 25595026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methods and approaches for the comprehensive characterization and quantification of cellular proteomes using mass spectrometry.
    Mirza SP; Olivier M
    Physiol Genomics; 2008 Mar; 33(1):3-11. PubMed ID: 18162499
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of Listeria monocytogenes subproteomes.
    Hébraud M
    Methods Mol Biol; 2014; 1157():109-28. PubMed ID: 24792553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteotyping: Proteomic characterization, classification and identification of microorganisms--A prospectus.
    Karlsson R; Gonzales-Siles L; Boulund F; Svensson-Stadler L; Skovbjerg S; Karlsson A; Davidson M; Hulth S; Kristiansson E; Moore ER
    Syst Appl Microbiol; 2015 Jun; 38(4):246-57. PubMed ID: 25933927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.
    Park AJ; Murphy K; Surette MD; Bandoro C; Krieger JR; Taylor P; Khursigara CM
    J Proteome Res; 2015 Nov; 14(11):4524-37. PubMed ID: 26378716
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2D electrophoresis-based expression proteomics: a microbiologist's perspective.
    Sá-Correia I; Teixeira MC
    Expert Rev Proteomics; 2010 Dec; 7(6):943-53. PubMed ID: 21142894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Are there biofilm-specific physiological pathways beyond a reasonable doubt?
    Ghigo JM
    Res Microbiol; 2003; 154(1):1-8. PubMed ID: 12576152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The physiology and collective recalcitrance of microbial biofilm communities.
    Gilbert P; Maira-Litran T; McBain AJ; Rickard AH; Whyte FW
    Adv Microb Physiol; 2002; 46():202-56. PubMed ID: 12073654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses.
    Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J
    FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteomic approaches to bacterial differentiation.
    Norbeck AD; Callister SJ; Monroe ME; Jaitly N; Elias DA; Lipton MS; Smith RD
    J Microbiol Methods; 2006 Dec; 67(3):473-86. PubMed ID: 16919344
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomics approaches in the quest of kidney disease biomarkers.
    Frantzi M; Bitsika V; Charonis A; Vlahou A
    Prilozi; 2011; 32(2):33-51. PubMed ID: 22286613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational prediction and experimental validation of signal peptide cleavages in the extracellular proteome of a natural microbial community.
    Erickson BK; Mueller RS; VerBerkmoes NC; Shah M; Singer SW; Thelen MP; Banfield JF; Hettich RL
    J Proteome Res; 2010 May; 9(5):2148-59. PubMed ID: 20218729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Perspective on Proteomics of Infectious Diseases.
    Venkatesh A; Gil C; Fuentes M; LaBaer J; Srivastava S
    Proteomics Clin Appl; 2018 Jul; 12(4):e1700139. PubMed ID: 29282898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.