These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 26068560)
21. A research agenda for malaria eradication: vector control. malERA Consultative Group on Vector Control PLoS Med; 2011 Jan; 8(1):e1000401. PubMed ID: 21311587 [TBL] [Abstract][Full Text] [Related]
23. Ivermectin to reduce malaria transmission II. Considerations regarding clinical development pathway. Chaccour C; Rabinovich NR Malar J; 2017 Apr; 16(1):166. PubMed ID: 28434405 [TBL] [Abstract][Full Text] [Related]
24. Species composition and insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in Kome, southern Chad and the implications for malaria control. Dadzie S; Appawu MA; Kerah-Hinzoumbe C; Akogbeto MC; Adimazoya M; Israel DK; Fadel AN; Williams J Parasit Vectors; 2016 Aug; 9(1):465. PubMed ID: 27553245 [TBL] [Abstract][Full Text] [Related]
25. The scope and limitations of insecticide spraying in rural vector control programmes in the states of Karnataka and Tamil Nadu in India. Barai D; Hyma B; Ramesh A Ecol Dis; 1982; 1(4):243-55. PubMed ID: 6206995 [TBL] [Abstract][Full Text] [Related]
26. Ivermectin Treatment for Cattle Reduced the Survival of Two Malaria Vectors, Anopheles dirus and Anopheles epiroticus, Under Laboratory Conditions in Central Vietnam. Cramer EY; Quang NX; Hertz JC; Van Nguyen D; Quang HH; Mendenhall I; Lover AA Am J Trop Med Hyg; 2021 Apr; 104(6):2165-2168. PubMed ID: 33901003 [TBL] [Abstract][Full Text] [Related]
27. Ivermectin to reduce malaria transmission III. Considerations regarding regulatory and policy pathways. Chaccour C; Rabinovich NR Malar J; 2017 Apr; 16(1):162. PubMed ID: 28434407 [TBL] [Abstract][Full Text] [Related]
28. Insecticide Resistance in Areas Under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination. Quiñones ML; Norris DE; Conn JE; Moreno M; Burkot TR; Bugoro H; Keven JB; Cooper R; Yan G; Rosas A; Palomino M; Donnelly MJ; Mawejje HD; Eapen A; Montgomery J; Coulibaly MB; Beier JC; Kumar A Am J Trop Med Hyg; 2015 Sep; 93(3 Suppl):69-78. PubMed ID: 26259947 [TBL] [Abstract][Full Text] [Related]
29. Evolution of insecticide resistance diagnostics in malaria vectors. Weetman D; Donnelly MJ Trans R Soc Trop Med Hyg; 2015 May; 109(5):291-3. PubMed ID: 25740955 [TBL] [Abstract][Full Text] [Related]
31. [Strategies and studies of malaria vector control in Jiangsu Province]. Li JL; Zhou HY; Tang JX; Zhu GD; Cao J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2020 Oct; 32(5):459-463. PubMed ID: 33185055 [TBL] [Abstract][Full Text] [Related]
32. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Chaccour C; Barrio Á; Gil Royo AG; Martinez Urbistondo D; Slater H; Hammann F; Del Pozo JL Malar J; 2015 Mar; 14():102. PubMed ID: 25872986 [TBL] [Abstract][Full Text] [Related]
33. Malaria Vector Control Still Matters despite Insecticide Resistance. Alout H; Labbé P; Chandre F; Cohuet A Trends Parasitol; 2017 Aug; 33(8):610-618. PubMed ID: 28499699 [TBL] [Abstract][Full Text] [Related]
34. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Kobylinski KC; Escobedo-Vargas KS; López-Sifuentes VM; Durand S; Smith ES; Baldeviano GC; Gerbasi RV; Ballard SB; Stoops CA; Vásquez GM Malar J; 2017 Nov; 16(1):474. PubMed ID: 29162101 [TBL] [Abstract][Full Text] [Related]
35. Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance. Kabula B; Derua YA; Tungui P; Massue DJ; Sambu E; Stanley G; Mosha FW; Kisinza WN Tanzan J Health Res; 2011 Dec; 13(5 Suppl 1):319-31. PubMed ID: 26591987 [TBL] [Abstract][Full Text] [Related]
36. Anopheles Vectors in Mainland China While Approaching Malaria Elimination. Zhang S; Guo S; Feng X; Afelt A; Frutos R; Zhou S; Manguin S Trends Parasitol; 2017 Nov; 33(11):889-900. PubMed ID: 28734898 [TBL] [Abstract][Full Text] [Related]
37. Vectors: recognising the challenge and reducing neglect. Hemingway J Int Health; 2019 Sep; 11(5):341-343. PubMed ID: 31529112 [TBL] [Abstract][Full Text] [Related]
38. A Roadmap for the Development of Ivermectin as a Complementary Malaria Vector Control Tool. ; Billingsley P; Binka F; Chaccour C; Foy B; Gold S; Gonzalez-Silva M; Jacobson J; Jagoe G; Jones C; Kachur P; Kobylinski K; Last A; Lavery JV; Mabey D; Mboera D; Mbogo C; Mendez-Lopez A; Rabinovich NR; Rees S; Richards F; Rist C; Rockwood J; Ruiz-Castillo P; Sattabongkot J; Saute F; Slater H; Steer A; Xia K; Zullinger R Am J Trop Med Hyg; 2020 Feb; 102(2s):3-24. PubMed ID: 31971144 [TBL] [Abstract][Full Text] [Related]
39. What does not kill it makes it weaker: effects of sub-lethal concentrations of ivermectin on the locomotor activity of Anopheles aquasalis. Sampaio VS; Rivas GBDS; Kobylinski K; Pinilla YT; Pimenta PFP; Lima JBP; Bruno RV; Lacerda MVG; Monteiro WM Parasit Vectors; 2017 Dec; 10(1):623. PubMed ID: 29282130 [TBL] [Abstract][Full Text] [Related]
40. Malaria vector control in South Africa. Brooke B; Koekemoer L; Kruger P; Urbach J; Misiani E; Coetzee M S Afr Med J; 2013 Aug; 103(10 Pt 2):784-8. PubMed ID: 24079634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]