These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 26068752)

  • 41. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
    Chylinski K; Le Rhun A; Charpentier E
    RNA Biol; 2013 May; 10(5):726-37. PubMed ID: 23563642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
    East-Seletsky A; O'Connell MR; Knight SC; Burstein D; Cate JH; Tjian R; Doudna JA
    Nature; 2016 Oct; 538(7624):270-273. PubMed ID: 27669025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR as a strong gene editing tool.
    Shen S; Loh TJ; Shen H; Zheng X; Shen H
    BMB Rep; 2017 Jan; 50(1):20-24. PubMed ID: 27616359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cas9-based genome editing in Arabidopsis and tobacco.
    Li JF; Zhang D; Sheen J
    Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease.
    Lim Y; Bak SY; Sung K; Jeong E; Lee SH; Kim JS; Bae S; Kim SK
    Nat Commun; 2016 Nov; 7():13350. PubMed ID: 27804953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
    Hayes RP; Xiao Y; Ding F; van Erp PB; Rajashankar K; Bailey S; Wiedenheft B; Ke A
    Nature; 2016 Feb; 530(7591):499-503. PubMed ID: 26863189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA.
    Wu D; Guan X; Zhu Y; Ren K; Huang Z
    Cell Res; 2017 May; 27(5):705-708. PubMed ID: 28374750
    [No Abstract]   [Full Text] [Related]  

  • 49. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational design of a split-Cas9 enzyme complex.
    Wright AV; Sternberg SH; Taylor DW; Staahl BT; Bardales JA; Kornfeld JE; Doudna JA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2984-9. PubMed ID: 25713377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
    Karvelis T; Gasiunas G; Siksnys V
    Methods; 2017 May; 121-122():3-8. PubMed ID: 28344037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S; Nishimasu H; Ishitani R; Nureki O
    Mol Cell; 2016 Mar; 61(6):886-94. PubMed ID: 26990991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry.
    Rollins MF; Chowdhury S; Carter J; Golden SM; Miettinen HM; Santiago-Frangos A; Faith D; Lawrence CM; Lander GC; Wiedenheft B
    Mol Cell; 2019 Apr; 74(1):132-142.e5. PubMed ID: 30872121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
    Anders C; Niewoehner O; Duerst A; Jinek M
    Nature; 2014 Sep; 513(7519):569-73. PubMed ID: 25079318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference.
    You L; Ma J; Wang J; Artamonova D; Wang M; Liu L; Xiang H; Severinov K; Zhang X; Wang Y
    Cell; 2019 Jan; 176(1-2):239-253.e16. PubMed ID: 30503210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Cleavage-Responsive Stem-Loop Hairpin for Assaying Guide RNA Activity.
    deBoer TR; Wauford N; Chung JY; Torres Perez MS; Murthy N
    ACS Chem Biol; 2018 Feb; 13(2):461-466. PubMed ID: 29381046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.