These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 26068752)
41. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. Chylinski K; Le Rhun A; Charpentier E RNA Biol; 2013 May; 10(5):726-37. PubMed ID: 23563642 [TBL] [Abstract][Full Text] [Related]
42. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. East-Seletsky A; O'Connell MR; Knight SC; Burstein D; Cate JH; Tjian R; Doudna JA Nature; 2016 Oct; 538(7624):270-273. PubMed ID: 27669025 [TBL] [Abstract][Full Text] [Related]
43. CRISPR as a strong gene editing tool. Shen S; Loh TJ; Shen H; Zheng X; Shen H BMB Rep; 2017 Jan; 50(1):20-24. PubMed ID: 27616359 [TBL] [Abstract][Full Text] [Related]
44. CRISPR/Cas9 in Genome Editing and Beyond. Wang H; La Russa M; Qi LS Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843 [TBL] [Abstract][Full Text] [Related]
45. Cas9-based genome editing in Arabidopsis and tobacco. Li JF; Zhang D; Sheen J Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353 [TBL] [Abstract][Full Text] [Related]
46. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Lim Y; Bak SY; Sung K; Jeong E; Lee SH; Kim JS; Bae S; Kim SK Nat Commun; 2016 Nov; 7():13350. PubMed ID: 27804953 [TBL] [Abstract][Full Text] [Related]
47. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Hayes RP; Xiao Y; Ding F; van Erp PB; Rajashankar K; Bailey S; Wiedenheft B; Ke A Nature; 2016 Feb; 530(7591):499-503. PubMed ID: 26863189 [TBL] [Abstract][Full Text] [Related]
48. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Wu D; Guan X; Zhu Y; Ren K; Huang Z Cell Res; 2017 May; 27(5):705-708. PubMed ID: 28374750 [No Abstract] [Full Text] [Related]
49. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs. Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958 [TBL] [Abstract][Full Text] [Related]
50. Rational design of a split-Cas9 enzyme complex. Wright AV; Sternberg SH; Taylor DW; Staahl BT; Bardales JA; Kornfeld JE; Doudna JA Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2984-9. PubMed ID: 25713377 [TBL] [Abstract][Full Text] [Related]
56. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Anders C; Niewoehner O; Duerst A; Jinek M Nature; 2014 Sep; 513(7519):569-73. PubMed ID: 25079318 [TBL] [Abstract][Full Text] [Related]
57. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770 [TBL] [Abstract][Full Text] [Related]
58. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896 [TBL] [Abstract][Full Text] [Related]
59. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference. You L; Ma J; Wang J; Artamonova D; Wang M; Liu L; Xiang H; Severinov K; Zhang X; Wang Y Cell; 2019 Jan; 176(1-2):239-253.e16. PubMed ID: 30503210 [TBL] [Abstract][Full Text] [Related]