These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 26068879)
1. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. Gong M; Zhao J; Liu J; Miao Q; Jiao L IEEE Trans Neural Netw Learn Syst; 2016 Jan; 27(1):125-38. PubMed ID: 26068879 [TBL] [Abstract][Full Text] [Related]
2. Change Detection in Synthetic Aperture Radar Images Based on a Generalized Gamma Deep Belief Networks. Jia M; Zhao Z Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960383 [TBL] [Abstract][Full Text] [Related]
3. Local Restricted Convolutional Neural Network for Change Detection in Polarimetric SAR Images. Liu F; Jiao L; Tang X; Yang S; Ma W; Hou B IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):818-833. PubMed ID: 30059322 [TBL] [Abstract][Full Text] [Related]
4. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. Gong M; Zhou Z; Ma J IEEE Trans Image Process; 2012 Apr; 21(4):2141-51. PubMed ID: 21984509 [TBL] [Abstract][Full Text] [Related]
5. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
6. Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. Ghosh A; Subudhi BN; Bruzzone L IEEE Trans Image Process; 2013 Aug; 22(8):3087-96. PubMed ID: 23715521 [TBL] [Abstract][Full Text] [Related]
7. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. Bruzzone L; Prieto DF IEEE Trans Image Process; 2002; 11(4):452-66. PubMed ID: 18244646 [TBL] [Abstract][Full Text] [Related]
8. Commonality Autoencoder: Learning Common Features for Change Detection From Heterogeneous Images. Wu Y; Li J; Yuan Y; Qin AK; Miao QG; Gong MG IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4257-4270. PubMed ID: 33600325 [TBL] [Abstract][Full Text] [Related]
9. Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition. Gao F; Ma F; Wang J; Sun J; Yang E; Zhou H Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126120 [TBL] [Abstract][Full Text] [Related]
10. Deep associative neural network for associative memory based on unsupervised representation learning. Liu J; Gong M; He H Neural Netw; 2019 May; 113():41-53. PubMed ID: 30780044 [TBL] [Abstract][Full Text] [Related]
11. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images. Liu J; Gong M; Qin K; Zhang P IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):545-559. PubMed ID: 28026789 [TBL] [Abstract][Full Text] [Related]
13. Unsupervised change detection of satellite images using low rank matrix completion. Gao S; Cheng Y; Zhao Y Opt Lett; 2013 Dec; 38(23):5146-9. PubMed ID: 24281531 [TBL] [Abstract][Full Text] [Related]
14. Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks. Cao S; Zhao C; Dong J; Fu X Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001068 [TBL] [Abstract][Full Text] [Related]
15. Deep Belief Network for Spectral⁻Spatial Classification of Hyperspectral Remote Sensor Data. Li C; Wang Y; Zhang X; Gao H; Yang Y; Wang J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626030 [TBL] [Abstract][Full Text] [Related]
16. Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method. Zhu L; Ma X; Wu P; Xu J Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922957 [TBL] [Abstract][Full Text] [Related]
17. Ship Classification in High-Resolution SAR Images via Transfer Learning with Small Training Dataset. Lu C; Li W Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586950 [TBL] [Abstract][Full Text] [Related]
18. Supervised cross-fusion method: a new triplet approach to fuse thermal, radar, and optical satellite data for land use classification. Rangzan K; Kabolizadeh M; Karimi D; Zareie S Environ Monit Assess; 2019 Jul; 191(8):481. PubMed ID: 31273539 [TBL] [Abstract][Full Text] [Related]
19. Detection of Partially Structural Collapse Using Long-Term Small Displacement Data from Satellite Images. Entezami A; De Michele C; Arslan AN; Behkamal B Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808455 [TBL] [Abstract][Full Text] [Related]
20. DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection. Yang M; Jiao L; Liu F; Hou B; Yang S; Jian M IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6402-6416. PubMed ID: 34029198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]