These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26068898)

  • 1. Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans.
    Yamazoe-Umemoto A; Fujita K; Iino Y; Iwasaki Y; Kimura KD
    Neurosci Res; 2015 Oct; 99():22-33. PubMed ID: 26068898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of odor avoidance regulated by dopamine signaling in Caenorhabditis elegans.
    Kimura KD; Fujita K; Katsura I
    J Neurosci; 2010 Dec; 30(48):16365-75. PubMed ID: 21123582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of neuropeptides in learning: Insights from C. elegans.
    De Fruyt N; Yu AJ; Rankin CH; Beets I; Chew YL
    Int J Biochem Cell Biol; 2020 Aug; 125():105801. PubMed ID: 32652305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in
    Fadda M; De Fruyt N; Borghgraef C; Watteyne J; Peymen K; Vandewyer E; Naranjo Galindo FJ; Kieswetter A; Mirabeau O; Chew YL; Beets I; Schoofs L
    J Neurosci; 2020 Jul; 40(31):6018-6034. PubMed ID: 32576621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular genetics on behavioral plasticity in Caenorhabditis elegans: mechanisms for associative learning].
    Ishihara T
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):450-5. PubMed ID: 14976771
    [No Abstract]   [Full Text] [Related]  

  • 6. A single sensory neuron directs both attractive and repulsive odor preferences.
    Mori I
    Neuron; 2008 Sep; 59(6):839-40. PubMed ID: 18817723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans.
    Glauser DA; Chen WC; Agin R; Macinnis BL; Hellman AB; Garrity PA; Tan MW; Goodman MB
    Genetics; 2011 May; 188(1):91-103. PubMed ID: 21368276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans.
    Beets I; Janssen T; Meelkop E; Temmerman L; Suetens N; Rademakers S; Jansen G; Schoofs L
    Science; 2012 Oct; 338(6106):543-5. PubMed ID: 23112336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans.
    Tsui D; van der Kooy D
    Learn Mem; 2008 Nov; 15(11):844-55. PubMed ID: 18984566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans.
    Tsunozaki M; Chalasani SH; Bargmann CI
    Neuron; 2008 Sep; 59(6):959-71. PubMed ID: 18817734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations that prevent associative learning in C. elegans.
    Wen JY; Kumar N; Morrison G; Rambaldini G; Runciman S; Rousseau J; van der Kooy D
    Behav Neurosci; 1997 Apr; 111(2):354-68. PubMed ID: 9106675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanism of experience-dependent sensory gain control in C. elegans.
    Ikejiri Y; Tanimoto Y; Fujita K; Hiramatsu F; Yamazaki SJ; Endo Y; Iwatani Y; Fujimoto K; Kimura KD
    Neurosci Res; 2023 Jun; 191():77-90. PubMed ID: 36681153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGL-3 and EGL-21 are required to trigger nocifensive response of Caenorhabditis elegans to noxious heat.
    Nkambeu B; Salem JB; Leonelli S; Marashi FA; Beaudry F
    Neuropeptides; 2019 Feb; 73():41-48. PubMed ID: 30454862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of dopamine-dependent behaviors by the Caenorhabditis elegans Olig homolog HLH-17.
    Felton CM; Johnson CM
    J Neurosci Res; 2011 Oct; 89(10):1627-36. PubMed ID: 21688290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Intestine-Derived Neuropeptide Controls Avoidance Behavior in Caenorhabditis elegans.
    Lee K; Mylonakis E
    Cell Rep; 2017 Sep; 20(10):2501-2512. PubMed ID: 28877481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the response-High throughput behavioral analyses to link genome to phenome in Caenorhabditis elegans.
    McDiarmid TA; Yu AJ; Rankin CH
    Genes Brain Behav; 2018 Mar; 17(3):e12437. PubMed ID: 29124896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans.
    Jurado P; Kodama E; Tanizawa Y; Mori I
    Genes Brain Behav; 2010 Feb; 9(1):120-7. PubMed ID: 20002199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intestinal TORC2 signaling pathway contributes to associative learning in Caenorhabditis elegans.
    Sakai N; Ohno H; Tomioka M; Iino Y
    PLoS One; 2017; 12(5):e0177900. PubMed ID: 28542414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans.
    Ghosh R; Mohammadi A; Kruglyak L; Ryu WS
    BMC Biol; 2012 Oct; 10():85. PubMed ID: 23114012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling.
    Singh K; Ju JY; Walsh MB; DiIorio MA; Hart AC
    Sleep; 2014 Sep; 37(9):1439-51. PubMed ID: 25142568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.