These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26068934)

  • 1. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide.
    Hou J; Cheng H; Takeda O; Zhu H
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8480-4. PubMed ID: 26068934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays.
    Kang Q; Wang T; Li P; Liu L; Chang K; Li M; Ye J
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):841-5. PubMed ID: 25422137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced
    Li N; Yan W; Niu Y; Qu S; Zuo P; Bai H; Zhao N
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9838-9845. PubMed ID: 33595271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion.
    Li H; Shi Y; Shang H; Wang W; Lu J; Zakharov AA; Hultman L; Uhrberg RIG; Syväjärvi M; Yakimova R; Zhang L; Sun J
    ACS Nano; 2020 Apr; 14(4):4905-4915. PubMed ID: 32243124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.
    Shanmugam M; Jacobs-Gedrim R; Song ES; Yu B
    Nanoscale; 2014 Nov; 6(21):12682-9. PubMed ID: 25210837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving water splitting performance of Cu2O through a synergistic "two-way transfer" process of Cu and graphene.
    Zhang D; Wei D; Cui Z; Wang S; Yang S; Cao M; Hu C
    Phys Chem Chem Phys; 2014 Dec; 16(46):25531-6. PubMed ID: 25350462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.
    Cai X; Wu H; Hou S; Peng M; Yu X; Zou D
    ChemSusChem; 2014 Feb; 7(2):474-82. PubMed ID: 24488679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.
    Meng X; Wang T; Liu L; Ouyang S; Li P; Hu H; Kako T; Iwai H; Tanaka A; Ye J
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11478-82. PubMed ID: 25044684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays.
    Ghadimkhani G; de Tacconi NR; Chanmanee W; Janaky C; Rajeshwar K
    Chem Commun (Camb); 2013 Feb; 49(13):1297-9. PubMed ID: 23296091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays: nanoporous surface with Cu(x)S as a hole mediator.
    Ouyang WX; Yu YX; Zhang WD
    Phys Chem Chem Phys; 2015 Jun; 17(22):14827-35. PubMed ID: 25978305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au@TiO₂ yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO₂ to solar fuel via a local electromagnetic field.
    Tu W; Zhou Y; Li H; Li P; Zou Z
    Nanoscale; 2015 Sep; 7(34):14232-6. PubMed ID: 26156088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.