BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26069052)

  • 1. Well-Defined and Robust Rhodium Catalysts for the Hydroacylation of Terminal and Internal Alkenes.
    Prades A; Fernández M; Pike SD; Willis MC; Weller AS
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8520-4. PubMed ID: 26069052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A second-generation catalyst for intermolecular hydroacylation of alkenes and alkynes using beta-S-substituted aldehydes: the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly HE; Brayshaw SK; Woodward RL; Weller AS; Willis MC
    Angew Chem Int Ed Engl; 2006 Nov; 45(45):7618-22. PubMed ID: 17044106
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation.
    Coxon TJ; Fernández M; Barwick-Silk J; McKay AI; Britton LE; Weller AS; Willis MC
    J Am Chem Soc; 2017 Jul; 139(29):10142-10149. PubMed ID: 28715214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of intermolecular hydroacylation of vinylsilanes catalyzed by a rhodium(I) olefin complex: a DFT study.
    Meng Q; Shen W; Li M
    J Mol Model; 2012 Mar; 18(3):1229-39. PubMed ID: 21713414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity.
    Osborne JD; Willis MC
    Chem Commun (Camb); 2008 Oct; (40):5025-7. PubMed ID: 18931774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodium-Catalyzed Enantioselective Intramolecular Hydroacylation of Trisubstituted Alkenes.
    Johnson KF; Schneider EA; Schumacher BP; Ellern A; Scanlon JD; Stanley LM
    Chemistry; 2016 Oct; 22(44):15619-15623. PubMed ID: 27572933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular hydroacylation: high activity rhodium catalysts containing small-bite-angle diphosphine ligands.
    Chaplin AB; Hooper JF; Weller AS; Willis MC
    J Am Chem Soc; 2012 Mar; 134(10):4885-97. PubMed ID: 22324763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodium-catalyzed sequential allylic amination and olefin hydroacylation reactions: enantioselective synthesis of seven-membered nitrogen heterocycles.
    Arnold JS; Mwenda ET; Nguyen HM
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3688-92. PubMed ID: 24591294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic enantioselective intermolecular hydroacylation: rhodium-catalyzed combination of beta-S-aldehydes and 1,3-disubstituted allenes.
    Osborne JD; Randell-Sly HE; Currie GS; Cowley AR; Willis MC
    J Am Chem Soc; 2008 Dec; 130(51):17232-3. PubMed ID: 19053453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rh-catalyzed intramolecular olefin hydroacylation: enantioselective synthesis of seven- and eight-membered heterocycles.
    Coulter MM; Dornan PK; Dong VM
    J Am Chem Soc; 2009 May; 131(20):6932-3. PubMed ID: 19415904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Kinetic Resolution of Aldehydes by Hydroacylation.
    Chen Z; Aota Y; Nguyen HMH; Dong VM
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4705-4709. PubMed ID: 30740841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium(I)-Catalyzed Intermolecular Hydroacylation of α-Keto Amides and Isatins with Non-Chelating Aldehydes.
    Kou KG; Longobardi LE; Dong VM
    Adv Synth Catal; 2015 Jul; 357(10):2233-2237. PubMed ID: 27134619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chelation-controlled intermolecular alkene and alkyne hydroacylation: the utility of beta-thioacetal aldehydes.
    Willis MC; Randell-Sly HE; Woodward RL; Currie GS
    Org Lett; 2005 May; 7(11):2249-51. PubMed ID: 15901181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodium phosphine-π-arene intermediates in the hydroamination of alkenes.
    Liu Z; Yamamichi H; Madrahimov ST; Hartwig JF
    J Am Chem Soc; 2011 Mar; 133(8):2772-82. PubMed ID: 21309512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrile-promoted Rh-catalyzed intermolecular hydroacylation of olefins with salicylaldehyde.
    Imai M; Tanaka M; Nagumo S; Kawahara N; Suemune H
    J Org Chem; 2007 Mar; 72(7):2543-6. PubMed ID: 17326687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium-catalyzed direct C-H addition of 3,4-dihydroquinazolines to alkenes and their use in the total synthesis of vasicoline.
    Wiedemann SH; Ellman JA; Bergman RG
    J Org Chem; 2006 Mar; 71(5):1969-76. PubMed ID: 16496982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale.
    Barwick-Silk J; Hardy S; Willis MC; Weller AS
    J Am Chem Soc; 2018 Jun; 140(23):7347-7357. PubMed ID: 29763563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.