BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26069216)

  • 1. Biosynthetic Mechanism of Lanosterol: Cyclization.
    Chen N; Wang S; Smentek L; Hess BA; Wu R
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8693-6. PubMed ID: 26069216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase.
    Thoma R; Schulz-Gasch T; D'Arcy B; Benz J; Aebi J; Dehmlow H; Hennig M; Stihle M; Ruf A
    Nature; 2004 Nov; 432(7013):118-22. PubMed ID: 15525992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanosterol biosynthesis: the critical role of the methyl-29 group of 2,3-oxidosqualene for the correct folding of this substrate and for the construction of the five-membered D ring.
    Hoshino T; Chiba A; Abe N
    Chemistry; 2012 Oct; 18(41):13108-16. PubMed ID: 22933236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted Cyclization of Lanosterol C-Ring and D-Ring Under Human Oxidosqualene Cyclase Catalysis: An ab Initio QM/MM MD Study.
    Chen N; Zhou J; Li J; Xu J; Wu R
    J Chem Theory Comput; 2014 Mar; 10(3):1109-20. PubMed ID: 26580186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis.
    Lamb DC; Jackson CJ; Warrilow AG; Manning NJ; Kelly DE; Kelly SL
    Mol Biol Evol; 2007 Aug; 24(8):1714-21. PubMed ID: 17567593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of isoleucine 705 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae affects lanosterol's C/D-ring cyclization and 17α/β-exocyclic side chain stereochemistry.
    Wu TK; Chang YC; Liu YT; Chang CH; Wen HY; Li WH; Shie WS
    Org Biomol Chem; 2011 Feb; 9(4):1092-7. PubMed ID: 21157613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism and product specificity of oxidosqualene-lanosterol cyclase: a QM/MM study.
    Tian BX; Eriksson LA
    J Phys Chem B; 2012 Nov; 116(47):13857-62. PubMed ID: 23130825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase.
    Rajamani R; Gao J
    J Am Chem Soc; 2003 Oct; 125(42):12768-81. PubMed ID: 14558824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminopropylindenes derived from Grundmann's ketone as a novel chemotype of oxidosqualene cyclase inhibitors.
    Lange S; Keller M; Müller C; Oliaro-Bosso S; Balliano G; Bracher F
    Eur J Med Chem; 2013 May; 63():758-64. PubMed ID: 23583910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerted nature of AB ring formation in the enzymatic cyclization of squalene to hopenes.
    Hess BA; Smentek L
    Org Lett; 2004 May; 6(11):1717-20. PubMed ID: 15151397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic cyclization of 22,23-dihydro-2,3-oxidosqualene into euph-7-en-3beta-ol and bacchar-12-en-3beta-ol by recombinant beta-amyrin synthase.
    Abe I; Sakano Y; Tanaka H; Lou W; Noguchi H; Shibuya M; Ebizuka Y
    J Am Chem Soc; 2004 Mar; 126(11):3426-7. PubMed ID: 15025461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and stereochemistry of enzymatic cyclization of 24,30-Bisnor-2,3-oxidosqualene by recombinant beta-amyrin synthase.
    Abe I; Sakano Y; Sodeyama M; Tanaka H; Noguchi H; Shibuya M; Ebizuka Y
    J Am Chem Soc; 2004 Jun; 126(22):6880-1. PubMed ID: 15174853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase.
    Liu YT; Hu TC; Chang CH; Shie WS; Wu TK
    Org Lett; 2012 Oct; 14(20):5222-5. PubMed ID: 23043506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concomitant C-ring Expansion and D-ring formation in lanosterol biosynthesis from squalene without violation of Markovnikov's rule.
    Hess BA
    J Am Chem Soc; 2002 Sep; 124(35):10286-7. PubMed ID: 12197724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase.
    Kimura M; Kushiro T; Shibuya M; Ebizuka Y; Abe I
    Biochem Biophys Res Commun; 2010 Jan; 391(1):899-902. PubMed ID: 19951700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships.
    Wu TK; Chang CH; Liu YT; Wang TT
    Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and inhibition studies of sulfur-substituted squalene oxide analogues as mechanism-based inhibitors of 2,3-oxidosqualene-lanosterol cyclase.
    Stach D; Zheng YF; Perez AL; Oehlschlager AC; Abe I; Prestwich GD; Hartman PG
    J Med Chem; 1997 Jan; 40(2):201-9. PubMed ID: 9003518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential cyclization of 2,3(S):22(S),23-dioxidosqualene by mammalian 2,3-oxidosqualene-lanosterol cyclase.
    Boutaud O; Dolis D; Schuber F
    Biochem Biophys Res Commun; 1992 Oct; 188(2):898-904. PubMed ID: 1445330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.