These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 26069258)
1. Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke. Begum G; Yuan H; Kahle KT; Li L; Wang S; Shi Y; Shmukler BE; Yang SS; Lin SH; Alper SL; Sun D Stroke; 2015 Jul; 46(7):1956-1965. PubMed ID: 26069258 [TBL] [Abstract][Full Text] [Related]
2. Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. Zhao H; Nepomuceno R; Gao X; Foley LM; Wang S; Begum G; Zhu W; Pigott VM; Falgoust LM; Kahle KT; Yang SS; Lin SH; Alper SL; Hitchens TK; Hu S; Zhang Z; Sun D J Cereb Blood Flow Metab; 2017 Feb; 37(2):550-563. PubMed ID: 26861815 [TBL] [Abstract][Full Text] [Related]
3. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II. Zeniya M; Sohara E; Kita S; Iwamoto T; Susa K; Mori T; Oi K; Chiga M; Takahashi D; Yang SS; Lin SH; Rai T; Sasaki S; Uchida S Hypertension; 2013 Nov; 62(5):872-8. PubMed ID: 24019400 [TBL] [Abstract][Full Text] [Related]
4. NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang II-Hypertensive Mice. Bhuiyan MIH; Young CB; Jahan I; Hasan MN; Fischer S; Meor Azlan NF; Liu M; Chattopadhyay A; Huang H; Kahle KT; Zhang J; Poloyac SM; Molyneaux BJ; Straub AC; Deng X; Gomez D; Sun D Stroke; 2022 May; 53(5):1720-1734. PubMed ID: 35272484 [TBL] [Abstract][Full Text] [Related]
5. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Thastrup JO; Rafiqi FH; Vitari AC; Pozo-Guisado E; Deak M; Mehellou Y; Alessi DR Biochem J; 2012 Jan; 441(1):325-37. PubMed ID: 22032326 [TBL] [Abstract][Full Text] [Related]
6. Suppression of WNK1-SPAK/OSR1 Attenuates Bone Cancer Pain by Regulating NKCC1 and KCC2. Gao JL; Peng K; Shen MW; Hou YH; Qian XB; Meng XW; Ji FH; Wang LN; Yang JP J Pain; 2019 Dec; 20(12):1416-1428. PubMed ID: 31085334 [TBL] [Abstract][Full Text] [Related]
7. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. Ponce-Coria J; Markadieu N; Austin TM; Flammang L; Rios K; Welling PA; Delpire E J Biol Chem; 2014 Jun; 289(25):17680-8. PubMed ID: 24811174 [TBL] [Abstract][Full Text] [Related]
8. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Josiah SS; Meor Azlan NF; Zhang J Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513812 [TBL] [Abstract][Full Text] [Related]
9. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Vitari AC; Thastrup J; Rafiqi FH; Deak M; Morrice NA; Karlsson HK; Alessi DR Biochem J; 2006 Jul; 397(1):223-31. PubMed ID: 16669787 [TBL] [Abstract][Full Text] [Related]
10. WNK3 kinase maintains neuronal excitability by reducing inwardly rectifying K Sinha AS; Wang T; Watanabe M; Hosoi Y; Sohara E; Akita T; Uchida S; Fukuda A Front Mol Neurosci; 2022; 15():856262. PubMed ID: 36311015 [TBL] [Abstract][Full Text] [Related]
11. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. Moriguchi T; Urushiyama S; Hisamoto N; Iemura S; Uchida S; Natsume T; Matsumoto K; Shibuya H J Biol Chem; 2005 Dec; 280(52):42685-93. PubMed ID: 16263722 [TBL] [Abstract][Full Text] [Related]
12. Role of nitric oxide and WNK-SPAK/OSR1-KCC2 signaling in daily changes in GABAergic inhibition in the rat dorsal raphe neurons. Kim MJ; Yang HJ; Kim Y; Kang I; Kim SS; Cho YW Neuropharmacology; 2018 Jun; 135():355-367. PubMed ID: 29596900 [TBL] [Abstract][Full Text] [Related]
13. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases. Huang H; Song S; Banerjee S; Jiang T; Zhang J; Kahle KT; Sun D; Zhang Z Aging Dis; 2019 Jun; 10(3):626-636. PubMed ID: 31165006 [TBL] [Abstract][Full Text] [Related]
14. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). Piechotta K; Lu J; Delpire E J Biol Chem; 2002 Dec; 277(52):50812-9. PubMed ID: 12386165 [TBL] [Abstract][Full Text] [Related]
15. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Wu D; Lai N; Deng R; Liang T; Pan P; Yuan G; Li X; Li H; Shen H; Wang Z; Chen G Exp Neurol; 2020 Oct; 332():113386. PubMed ID: 32589890 [TBL] [Abstract][Full Text] [Related]
16. Functional kinomics establishes a critical node of volume-sensitive cation-Cl Zhang J; Gao G; Begum G; Wang J; Khanna AR; Shmukler BE; Daubner GM; de Los Heros P; Davies P; Varghese J; Bhuiyan MI; Duan J; Zhang J; Duran D; Alper SL; Sun D; Elledge SJ; Alessi DR; Kahle KT Sci Rep; 2016 Oct; 6():35986. PubMed ID: 27782176 [TBL] [Abstract][Full Text] [Related]
17. With-No-Lysine Kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. Haas BR; Cuddapah VA; Watkins S; Rohn KJ; Dy TE; Sontheimer H Am J Physiol Cell Physiol; 2011 Nov; 301(5):C1150-60. PubMed ID: 21813709 [TBL] [Abstract][Full Text] [Related]
18. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. Ferdaus MZ; Barber KW; López-Cayuqueo KI; Terker AS; Argaiz ER; Gassaway BM; Chambrey R; Gamba G; Rinehart J; McCormick JA J Physiol; 2016 Sep; 594(17):4945-66. PubMed ID: 27068441 [TBL] [Abstract][Full Text] [Related]
20. Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Mercier-Zuber A; O'Shaughnessy KM Curr Opin Nephrol Hypertens; 2011 Sep; 20(5):534-40. PubMed ID: 21610494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]