These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26069595)

  • 21. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped.
    Li Z; Su Y; Xie B; Liu X; Gao X; Wang D
    J Mater Chem B; 2015 Mar; 3(9):1769-1778. PubMed ID: 32262250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoresponsive Double Network Hydrogels with Exceptional Compressive Mechanical Properties.
    Means AK; Ehrhardt DA; Whitney LV; Grunlan MA
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28895241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fully physically cross-linked double network hydrogels with strong mechanical properties, good recovery and self-healing properties.
    Ye L; Lv Q; Sun X; Liang Y; Fang P; Yuan X; Li M; Zhang X; Shang X; Liang H
    Soft Matter; 2020 Feb; 16(7):1840-1849. PubMed ID: 31971198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption.
    Gao G; Du G; Cheng Y; Fu J
    J Mater Chem B; 2014 Mar; 2(11):1539-1548. PubMed ID: 32261372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid pectin-Fe
    Niu R; Qin Z; Ji F; Xu M; Tian X; Li J; Yao F
    Soft Matter; 2017 Dec; 13(48):9237-9245. PubMed ID: 29199306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Azo-Crosslinked Double-Network Hydrogels Enabling Highly Efficient Mechanoradical Generation.
    Wang ZJ; Jiang J; Mu Q; Maeda S; Nakajima T; Gong JP
    J Am Chem Soc; 2022 Feb; 144(7):3154-3161. PubMed ID: 35148089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual physically crosslinked double network hydrogels with high toughness and self-healing properties.
    Li X; Yang Q; Zhao Y; Long S; Zheng J
    Soft Matter; 2017 Feb; 13(5):911-920. PubMed ID: 28078338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable Poly(acrylic acid-
    Jing Z; Xu A; Liang YQ; Zhang Z; Yu C; Hong P; Li Y
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31159410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial cartilage made from a novel double-network hydrogel: In vivo effects on the normal cartilage and ex vivo evaluation of the friction property.
    Arakaki K; Kitamura N; Fujiki H; Kurokawa T; Iwamoto M; Ueno M; Kanaya F; Osada Y; Gong JP; Yasuda K
    J Biomed Mater Res A; 2010 Jun; 93(3):1160-8. PubMed ID: 19768793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network.
    Nakajima T; Fukuda Y; Kurokawa T; Sakai T; Chung UI; Gong JP
    ACS Macro Lett; 2013 Jun; 2(6):518-521. PubMed ID: 35581809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elucidation of the chemical and morphological structure of double-network (DN) hydrogels by high-resolution magic angle spinning (HRMAS) NMR spectroscopy.
    Shestakova P; Willem R; Vassileva E
    Chemistry; 2011 Dec; 17(52):14867-77. PubMed ID: 22031395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A tough double network hydrogel for cartilage tissue engineering.
    Fan C; Liao L; Zhang C; Liu L
    J Mater Chem B; 2013 Sep; 1(34):4251-4258. PubMed ID: 32261020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural protein-based hydrogels with high strength and rapid self-recovery.
    Liu Z; Tang Z; Zhu L; Lu S; Chen F; Tang C; Sun H; Yang J; Qin G; Chen Q
    Int J Biol Macromol; 2019 Dec; 141():108-116. PubMed ID: 31479668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly stretchable, self-healing and conductive silk fibroin-based double network gels
    Fang T; Zhu J; Xu S; Jia L; Ma Y
    RSC Adv; 2022 Apr; 12(18):11574-11582. PubMed ID: 35432940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels.
    Li C; Zhou X; Zhu L; Xu Z; Tan P; Wang H; Chen G; Zhou X
    Soft Matter; 2021 Feb; 17(6):1566-1573. PubMed ID: 33346314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inorganic/Organic Double-Network Gels Containing Ionic Liquids.
    Kamio E; Yasui T; Iida Y; Gong JP; Matsuyama H
    Adv Mater; 2017 Dec; 29(47):. PubMed ID: 29114950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.
    Kwon HJ; Yasuda K
    J Mech Behav Biomed Mater; 2013 Jan; 17():337-46. PubMed ID: 23127629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.
    Ronken S; Arnold MP; Ardura GarcĂ­a H; Jeger A; Daniels AU; Wirz D
    Biomech Model Mechanobiol; 2012 May; 11(5):631-9. PubMed ID: 21769620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy dissipation via the internal fracture of the silica particle network in inorganic/organic double network ion gels.
    Yasui T; Fujinami S; Hoshino T; Kamio E; Matsuyama H
    Soft Matter; 2020 Mar; 16(9):2363-2370. PubMed ID: 32057064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanically strong hybrid double network hydrogels with antifouling properties.
    Chen H; Chen Q; Hu R; Wang H; Newby BZ; Chang Y; Zheng J
    J Mater Chem B; 2015 Jul; 3(27):5426-5435. PubMed ID: 32262514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.