These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26069933)

  • 1. Control of cardiac alternans in an electromechanical model of cardiac tissue.
    Hazim A; Belhamadia Y; Dubljevic S
    Comput Biol Med; 2015 Aug; 63():108-17. PubMed ID: 26069933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical perturbation control of cardiac alternans.
    Hazim A; Belhamadia Y; Dubljevic S
    Phys Rev E; 2018 May; 97(5-1):052407. PubMed ID: 29906969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac alternans annihilation by distributed mechano-electric feedback (MEF).
    Deshpande D; Belhamadia Y; Dubljevic S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():259-62. PubMed ID: 22254299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cardiac alternans by mechanical and electrical feedback.
    Yapari F; Deshpande D; Belhamadia Y; Dubljevic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012706. PubMed ID: 25122334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac contraction induces discordant alternans and localized block.
    Radszuweit M; Alvarez-Lacalle E; Bär M; Echebarria B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022703. PubMed ID: 25768527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on Feedback Control of Cardiac Alternans.
    Dubljevic S; Lin SF; Christofides P
    Comput Chem Eng; 2008 Sep; 32(9):2086-2098. PubMed ID: 21423841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simulation Study of the Role of Mechanical Stretch in Arrhythmogenesis during Cardiac Alternans.
    Hazim A; Belhamadia Y; Dubljevic S
    Biophys J; 2021 Jan; 120(1):109-121. PubMed ID: 33248131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes.
    Park JI; Lim KM
    Biomed Eng Online; 2019 Jun; 18(1):72. PubMed ID: 31174533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constant DI pacing suppresses cardiac alternans formation in numerical cable models.
    Zlochiver S; Johnson C; Tolkacheva EG
    Chaos; 2017 Sep; 27(9):093903. PubMed ID: 28964144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical alternans and the onset of rate-induced pulsus alternans during acute regional ischaemia in the anaesthetised pig heart.
    Murphy CF; Horner SM; Dick DJ; Coen B; Lab MJ
    Cardiovasc Res; 1996 Jul; 32(1):138-47. PubMed ID: 8776411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mathematical models for the study of electromechanical and mechanoelectrical coupling in the myocardium].
    Solov'eva OE; Konovalov PV; Vikulova NA; Katsnel'son LB; Markhasin VS
    Ross Fiziol Zh Im I M Sechenova; 2007 Sep; 93(9):945-68. PubMed ID: 18030795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [One-dimensional time-dependent model of the cardiac pacemaker activity induced by the mechanoelectric feedback in a thermo-electro-mechanical background].
    Collet A; Desaive T; Dauby PC
    Ann Cardiol Angeiol (Paris); 2012 Jun; 61(3):156-61. PubMed ID: 22681984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mechano-electrical feedback on the onset of alternans: A computational study.
    Hazim A; Belhamadia Y; Dubljevic S
    Chaos; 2019 Jun; 29(6):063126. PubMed ID: 31266317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional electromechanical alternans in anesthetized pig hearts: modulation by mechanoelectric feedback.
    Murphy CF; Lab MJ; Horner SM; Dick DJ; Harrison FG
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1726-35. PubMed ID: 7977805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal control of cardiac alternans.
    Echebarria B; Karma A
    Chaos; 2002 Sep; 12(3):923-930. PubMed ID: 12779616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of spatially discordant repolarization alternans in cardiac tissue.
    Huang C; Song Z; Di Z; Qu Z
    Chaos; 2020 Dec; 30(12):123141. PubMed ID: 33380024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive diastolic interval control of cardiac action potential duration alternans.
    Jordan PN; Christini DJ
    J Cardiovasc Electrophysiol; 2004 Oct; 15(10):1177-85. PubMed ID: 15485444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac alternans: diverse mechanisms and clinical manifestations.
    Surawicz B; Fisch C
    J Am Coll Cardiol; 1992 Aug; 20(2):483-99. PubMed ID: 1634690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.