These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2607)

  • 1. Isolation and characterization of indole-3-acetaldehyde reductases from Cucumis sativus.
    Brown HM; Purves WK
    J Biol Chem; 1976 Feb; 251(4):907-13. PubMed ID: 2607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indoleacetaldehyde Reductase of Cucumis sativus L: KINETIC PROPERTIES AND ROLE IN AUXIN BIOSYNTHESIS.
    Brown HM; Purves WK
    Plant Physiol; 1980 Jan; 65(1):107-13. PubMed ID: 16661122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin biogenesis: subcellular compartmentation of indoleacetaldehyde reductases in cucumber seedlings.
    Bower PJ; Brown HM; Purves WK
    Plant Physiol; 1976 Jun; 57(6):850-4. PubMed ID: 16659584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The presence of two NADPH-linked aromatic aldehyde-ketone reductases different from aldehyde reductase in rabbit liver.
    Sawada H; Hara A
    Biochem Pharmacol; 1979 Apr; 28(7):1089-94. PubMed ID: 36089
    [No Abstract]   [Full Text] [Related]  

  • 5. Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases.
    Kleczkowski LA; Randall DD
    Biochem J; 1988 Feb; 250(1):145-52. PubMed ID: 3281657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on NADH (NADPH)-cytochrome c reductase (FMN-containing) from yeast. Isolation and physicochemical properties of the enzyme from top-fermenting ale yeast.
    Johnson MS; Kuby SA
    J Biol Chem; 1985 Oct; 260(22):12341-50. PubMed ID: 3930493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and properties of low-Km aldehyde reductase from ox brain.
    Ryle CM; Dowling TG; Tipton KF
    Biochim Biophys Acta; 1984 Dec; 791(2):155-63. PubMed ID: 6391552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Purification and preliminary characterization.
    MacKintosh RW; Fewson CA
    Biochem J; 1988 Mar; 250(3):743-51. PubMed ID: 3291854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cucumber seedling indoleacetaldehyde oxidase.
    Bower PJ; Brown HM; Purves WK
    Plant Physiol; 1978 Jan; 61(1):107-10. PubMed ID: 16660220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of biliverdin reductases from pig spleen and rat liver.
    Noguchi M; Yoshida T; Kikuchi G
    J Biochem; 1979 Oct; 86(4):833-48. PubMed ID: 40968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guinea pig liver aromatic aldehyde-ketone reductases identical with 17 beta-hydroxysteroid dehydrogenase isozymes.
    Sawada H; Hara A; Hayashibara M; Nakayama T
    J Biochem; 1979 Oct; 86(4):883-92. PubMed ID: 40969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificities and properties of three reduced pyridine nucleotide-flavin mononucleotide reductases coupling to bacterial luciferase.
    Watanabe H; Hastings JW
    Mol Cell Biochem; 1982 May; 44(3):181-7. PubMed ID: 6981058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.
    Burdette D; Zeikus JG
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):163-70. PubMed ID: 8068002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme.
    Hossain MA; Asada K
    J Biol Chem; 1985 Oct; 260(24):12920-6. PubMed ID: 4055727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assimilatory nitrate reductase from Chlorella. Effect of ionic strength and pH on catalytic activity.
    Kay CJ; Barber MJ
    J Biol Chem; 1986 Oct; 261(30):14125-9. PubMed ID: 3771527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductases for aromatic aldehydes and ketones from rabbit liver. Purification and characterization.
    Sawada H; Hara A; Nakayama T; Kato F
    J Biochem; 1980 Apr; 87(4):1153-65. PubMed ID: 7390984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two aldehyde dehydrogenases from human liver. Isolation via affinity chromatography and characterization of the isozymes.
    Greenfield NJ; Pietruszko R
    Biochim Biophys Acta; 1977 Jul; 483(1):35-45. PubMed ID: 18196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and properties of human liver aldehyde reductases.
    Petrash JM; Srivastava SK
    Biochim Biophys Acta; 1982 Sep; 707(1):105-14. PubMed ID: 6753936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia.
    Sánchez LB
    Arch Biochem Biophys; 1998 Jun; 354(1):57-64. PubMed ID: 9633598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH-dependent reductases in dog thyroid: comparison of a third enzyme "glyceraldehyde reductase" to dog thyroid aldehyde reductase.
    Schaffhauser MA; Sato S; Kador PF
    Int J Biochem Cell Biol; 1996 Mar; 28(3):275-84. PubMed ID: 8920636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.