These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 26070087)
1. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes. Wei Y; Zhou H; Zhang J; Zhang L; Geng A; Liu F; Zhao G; Wang S; Zhou Z; Yan X PLoS One; 2015; 10(6):e0129921. PubMed ID: 26070087 [TBL] [Abstract][Full Text] [Related]
2. Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics. Kougias PG; Campanaro S; Treu L; Tsapekos P; Armani A; Angelidaki I Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006398 [TBL] [Abstract][Full Text] [Related]
3. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Lebuhn M; Hanreich A; Klocke M; Schlüter A; Bauer C; Pérez CM Anaerobe; 2014 Oct; 29():10-21. PubMed ID: 24785351 [TBL] [Abstract][Full Text] [Related]
4. Metagenomic insights into the fibrolytic microbiome in yak rumen. Dai X; Zhu Y; Luo Y; Song L; Liu D; Liu L; Chen F; Wang M; Li J; Zeng X; Dong Z; Hu S; Li L; Xu J; Huang L; Dong X PLoS One; 2012; 7(7):e40430. PubMed ID: 22808161 [TBL] [Abstract][Full Text] [Related]
5. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. Oh HN; Park D; Seong HJ; Kim D; Sul WJ J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125 [TBL] [Abstract][Full Text] [Related]
6. Discovery of (hemi-) cellulase genes in a metagenomic library from a biogas digester using 454 pyrosequencing. Yan X; Geng A; Zhang J; Wei Y; Zhang L; Qian C; Wang Q; Wang S; Zhou Z Appl Microbiol Biotechnol; 2013 Sep; 97(18):8173-82. PubMed ID: 23653123 [TBL] [Abstract][Full Text] [Related]
7. Comparison of sampling techniques and different media for the enrichment and isolation of cellulolytic organisms from biogas fermenters. Rettenmaier R; Duerr C; Neuhaus K; Liebl W; Zverlov VV Syst Appl Microbiol; 2019 Jul; 42(4):481-487. PubMed ID: 31153679 [TBL] [Abstract][Full Text] [Related]
8. Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island. Oh HN; Lee TK; Park JW; No JH; Kim D; Sul WJ J Microbiol Biotechnol; 2017 Sep; 27(9):1670-1680. PubMed ID: 28633514 [TBL] [Abstract][Full Text] [Related]
9. Archaeal and bacterial community structures of rural household biogas digesters with different raw materials in Qinghai Plateau. Han R; Liu L; Meng Y; Han H; Xiong R; Li Y; Chen L Biotechnol Lett; 2021 Jul; 43(7):1337-1348. PubMed ID: 33811593 [TBL] [Abstract][Full Text] [Related]
10. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria. Pinnell LJ; Dunford E; Ronan P; Hausner M; Neufeld JD Can J Microbiol; 2014 Jul; 60(7):469-76. PubMed ID: 24983351 [TBL] [Abstract][Full Text] [Related]
11. Microbial carbohydrate active enzyme (CAZyme) genes and diversity from Menagesha Suba natural forest soils of Ethiopia as revealed by shotgun metagenomic sequencing. Sime AM; Kifle BA; Woldesemayat AA; Gemeda MT BMC Microbiol; 2024 Aug; 24(1):285. PubMed ID: 39090559 [TBL] [Abstract][Full Text] [Related]
12. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697 [TBL] [Abstract][Full Text] [Related]
13. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches. Kanokratana P; Wongwilaiwalin S; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Champreda V J Biosci Bioeng; 2018 Apr; 125(4):439-447. PubMed ID: 29169786 [TBL] [Abstract][Full Text] [Related]
14. Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Abendroth C; Latorre-Pérez A; Porcar M; Simeonov C; Luschnig O; Vilanova C; Pascual J Syst Appl Microbiol; 2020 Jan; 43(1):126024. PubMed ID: 31708159 [TBL] [Abstract][Full Text] [Related]
15. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Izquierdo JA; Sizova MV; Lynd LR Appl Environ Microbiol; 2010 Jun; 76(11):3545-53. PubMed ID: 20382819 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal dynamics of bacterial and archaeal communities in household biogas digesters from tropical and subtropical regions of Yunnan Province, China. Tian G; Li Q; Dong M; Wu Y; Yang B; Zhang L; Li Y; Yin F; Zhao X; Wang Y; Xiao W; Cui X; Zhang W Environ Sci Pollut Res Int; 2016 Jun; 23(11):11137-11148. PubMed ID: 26916266 [TBL] [Abstract][Full Text] [Related]
17. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review]. Chen F; Zhu Y; Dong X; Liu L; Huang L; Dai X Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):981-7. PubMed ID: 20931863 [TBL] [Abstract][Full Text] [Related]
19. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants. Dollhofer V; Callaghan TM; Griffith GW; Lebuhn M; Bauer J Bioresour Technol; 2017 Jul; 235():131-139. PubMed ID: 28365340 [TBL] [Abstract][Full Text] [Related]
20. [Biodiversity of mesophilic microbial community BYND-8 capability of lignocellulose degradation and its effect on biogas production]. Wang WD; Song YB; Wang YJ; Gao YM; Jing RY; Cui ZJ Huan Jing Ke Xue; 2011 Jan; 32(1):253-8. PubMed ID: 21404695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]