These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices. Hsu JC; Hsu CH; Huang YW Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118 [TBL] [Abstract][Full Text] [Related]
4. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Huang H; Stratton Z; Huang Y; Huang TJ Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400 [TBL] [Abstract][Full Text] [Related]
5. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Ai Y; Sanders CK; Marrone BL Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497 [TBL] [Abstract][Full Text] [Related]
6. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW). Sriphutkiat Y; Zhou Y Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related]
8. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves. Alshehhi F; Waheed W; Al-Ali A; Abu-Nada E; Alazzam A Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838066 [TBL] [Abstract][Full Text] [Related]
9. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
10. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators. Sehgal P; Kirby BJ Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191 [TBL] [Abstract][Full Text] [Related]
11. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation. Dong J; Liang D; Yang X; Sun C Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199 [TBL] [Abstract][Full Text] [Related]
13. Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals. Jiang Y; Chen J; Xuan W; Liang Y; Huang X; Cao Z; Sun L; Dong S; Luo J Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904975 [TBL] [Abstract][Full Text] [Related]
14. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Muller PB; Barnkob R; Jensen MJ; Bruus H Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952 [TBL] [Abstract][Full Text] [Related]
15. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
16. Numerical study of acoustophoretic manipulation of particles in microfluidic channels. Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594 [TBL] [Abstract][Full Text] [Related]
17. The effect of microchannel height on the acoustophoretic motion of sub-micron particles. Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269 [TBL] [Abstract][Full Text] [Related]