These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
468 related articles for article (PubMed ID: 26070191)
21. Design and simulation of a microfluidic device for acoustic cell separation. Shamloo A; Boodaghi M Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517 [TBL] [Abstract][Full Text] [Related]
22. Microfluidic Particle Separation and Detection System Based on Standing Surface Acoustic Wave and Lensless Imaging. Chen J; Huang X; Xu X; Wang R; Wei M; Han W; Cao J; Xuan W; Ge Y; Wang J; Sun L; Luo JK IEEE Trans Biomed Eng; 2022 Jul; 69(7):2165-2175. PubMed ID: 34951837 [TBL] [Abstract][Full Text] [Related]
23. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications. Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383 [TBL] [Abstract][Full Text] [Related]
24. Particle separation in microfluidics using different modal ultrasonic standing waves. Zhang Y; Chen X Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322 [TBL] [Abstract][Full Text] [Related]
25. Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Deshmukh S; Brzozka Z; Laurell T; Augustsson P Lab Chip; 2014 Sep; 14(17):3394-400. PubMed ID: 25007385 [TBL] [Abstract][Full Text] [Related]
26. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics. Travagliati M; Shilton R; Beltram F; Cecchini M J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515 [TBL] [Abstract][Full Text] [Related]
27. Theory of acoustophoresis in counterpropagating surface acoustic wave fields for particle separation. Liu Z; Xu G; Ni Z; Chen X; Guo X; Tu J; Zhang D Phys Rev E; 2021 Mar; 103(3-1):033104. PubMed ID: 33862812 [TBL] [Abstract][Full Text] [Related]
28. Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis. Saeidi D; Saghafian M; Haghjooy Javanmard S; Hammarström B; Wiklund M J Acoust Soc Am; 2019 Jun; 145(6):3311. PubMed ID: 31255151 [TBL] [Abstract][Full Text] [Related]
30. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers. Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714 [TBL] [Abstract][Full Text] [Related]
31. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach. Samandari M; Abrinia K; Sanati-Nezhad A Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480 [TBL] [Abstract][Full Text] [Related]
32. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition. Dron O; Aider JL Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114 [TBL] [Abstract][Full Text] [Related]
33. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Namnabat MS; Moghimi Zand M; Houshfar E Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758 [TBL] [Abstract][Full Text] [Related]
34. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. Sankaranarayanan SK; Bhethanabotla VR IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221 [TBL] [Abstract][Full Text] [Related]
35. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications. Riaud A; Baudoin M; Thomas JL; Bou Matar O IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1601-1607. PubMed ID: 28873055 [TBL] [Abstract][Full Text] [Related]
36. Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field. Hwang JY; Youn S; Yang IH Anal Chim Acta; 2019 Jan; 1047():238-247. PubMed ID: 30567656 [TBL] [Abstract][Full Text] [Related]
37. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields. Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955 [TBL] [Abstract][Full Text] [Related]
38. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect. Ma Z; Guo J; Liu YJ; Ai Y Nanoscale; 2015 Sep; 7(33):14047-54. PubMed ID: 26239679 [TBL] [Abstract][Full Text] [Related]
39. Virtual membrane for filtration of particles using surface acoustic waves (SAW). Fakhfouri A; Devendran C; Collins DJ; Ai Y; Neild A Lab Chip; 2016 Sep; 16(18):3515-23. PubMed ID: 27458086 [TBL] [Abstract][Full Text] [Related]
40. Investigation of polymer-shelled microbubble motions in acoustophoresis. Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]