These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 26070628)

  • 21. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.
    Zhou X; Liu J
    PLoS One; 2014; 9(3):e92023. PubMed ID: 24637666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network biomarkers reveal dysfunctional gene regulations during disease progression.
    Zeng T; Sun SY; Wang Y; Zhu H; Chen L
    FEBS J; 2013 Nov; 280(22):5682-95. PubMed ID: 24107168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.
    Jiang X; Zhang H; Quan X
    Biomed Res Int; 2016; 2016():3962761. PubMed ID: 28042568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative splicing regulatory network reconstruction from exon array data.
    Qu K; Yesnik AM; Ortoleva PJ
    J Theor Biol; 2010 Apr; 263(4):471-80. PubMed ID: 20043923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.
    Kim H; Gelenbe E
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):259-65. PubMed ID: 22987132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An information theoretic method for reconstructing local regulatory network modules from polymorphic samples.
    Jagalur M; Kulp D
    Comput Syst Bioinformatics Conf; 2007; 6():133-43. PubMed ID: 17951819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative gene network construction for predicting a set of complementary prostate cancer genes.
    Ahn J; Yoon Y; Park C; Shin E; Park S
    Bioinformatics; 2011 Jul; 27(13):1846-53. PubMed ID: 21551151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A network-based method for predicting disease-causing genes.
    Karni S; Soreq H; Sharan R
    J Comput Biol; 2009 Feb; 16(2):181-9. PubMed ID: 19193144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Network analysis reveals a stress-affected common gene module among seven stress-related diseases/systems which provides potential targets for mechanism research.
    Guo L; Du Y; Wang J
    Sci Rep; 2015 Aug; 5():12939. PubMed ID: 26245528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IndividualizedPath: identifying genetic alterations contributing to the dysfunctional pathways in glioblastoma individuals.
    Ping Y; Zhang H; Deng Y; Wang L; Zhao H; Pang L; Fan H; Xu C; Li F; Zhang Y; Gong Y; Xiao Y; Li X
    Mol Biosyst; 2014 Aug; 10(8):2031-42. PubMed ID: 24911613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Module Based Differential Coexpression Analysis Method for Type 2 Diabetes.
    Yuan L; Zheng CH; Xia JF; Huang DS
    Biomed Res Int; 2015; 2015():836929. PubMed ID: 26339648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases.
    de la Fuente A
    Trends Genet; 2010 Jul; 26(7):326-33. PubMed ID: 20570387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide expression and methylation profiles reveal candidate genes and biological processes underlying synovial inflammatory tissue of patients with osteoarthritis.
    Yang J; Wang N
    Int J Rheum Dis; 2015 Sep; 18(7):783-90. PubMed ID: 26171692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of a gene-gene interaction network with a combined score across multiple approaches.
    Zhang AM; Song H; Shen YH; Liu Y
    Genet Mol Res; 2015 Jun; 14(2):7018-30. PubMed ID: 26125911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer.
    Li Y; Chen J; Zhang J; Wang Z; Shao T; Jiang C; Xu J; Li X
    Oncotarget; 2015 Sep; 6(28):25003-16. PubMed ID: 26305674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy.
    He QE; Tong YF; Ye Z; Gao LX; Zhang YZ; Wang L; Song K
    Technol Cancer Res Treat; 2020; 19():1533033820909112. PubMed ID: 32329416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.