These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 26070631)
41. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Sayyed AH; Gatsi R; Ibiza-Palacios MS; Escriche B; Wright DJ; Crickmore N Appl Environ Microbiol; 2005 Nov; 71(11):6863-9. PubMed ID: 16269720 [TBL] [Abstract][Full Text] [Related]
42. [Association of bioassays and molecular characterization to select new Bacillus thuringiensis isolates effective against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)]. Fatoretto JC; Sena JA; Barreto MR; Lemos MV; Boiça AL Neotrop Entomol; 2007; 36(5):737-45. PubMed ID: 18060300 [TBL] [Abstract][Full Text] [Related]
43. Association of PCR and feeding bioassays as a large-scale method to screen tropical Bacillus thuringiensis isolates for a cry constitution with higher insecticidal effect against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Loguercio LL; Santos CG; Barreto MR; Guimaraes CT; Paiva E Lett Appl Microbiol; 2001 May; 32(5):362-7. PubMed ID: 11328507 [TBL] [Abstract][Full Text] [Related]
44. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. Thammasittirong A; Attathom T J Invertebr Pathol; 2008 Jun; 98(2):121-6. PubMed ID: 18407288 [TBL] [Abstract][Full Text] [Related]
45. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Iriarte J; Bel Y; Ferrandis MD; Andrew R; Murillo J; Ferré J; Caballero P Syst Appl Microbiol; 1998 Mar; 21(1):97-106. PubMed ID: 9741114 [TBL] [Abstract][Full Text] [Related]
46. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Ruiz de Escudero I; Estela A; Porcar M; Martínez C; Oguiza JA; Escriche B; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jul; 72(7):4796-804. PubMed ID: 16820473 [TBL] [Abstract][Full Text] [Related]
47. Molecular characterization of lepidopteran-specific toxin genes in Boonmee K; Thammasittirong SN; Thammasittirong A 3 Biotech; 2019 Apr; 9(4):117. PubMed ID: 30854277 [TBL] [Abstract][Full Text] [Related]
48. Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Sayyed AH; Moores G; Crickmore N; Wright DJ Pest Manag Sci; 2008 Aug; 64(8):813-9. PubMed ID: 18383197 [TBL] [Abstract][Full Text] [Related]
49. Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China. Gong Y; Wang C; Yang Y; Wu S; Wu Y J Invertebr Pathol; 2010 Jun; 104(2):90-6. PubMed ID: 20167218 [TBL] [Abstract][Full Text] [Related]
50. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in spain and evaluation of their insecticidal activity against Ceratitis capitata. Vidal-Quist JC; Castañera P; González-Cabrera J J Microbiol Biotechnol; 2009 Aug; 19(8):749-59. PubMed ID: 19734711 [TBL] [Abstract][Full Text] [Related]
51. Fall Armyworm (Lepidoptera: Noctuidae) Development, Survivorship, and Damage on Cotton Plants Expressing Insecticidal Plant-Incorporated Protectants. Hardke JT; Jackson RE; Leonard BR; Temple JH J Econ Entomol; 2015 Jun; 108(3):1086-93. PubMed ID: 26470233 [TBL] [Abstract][Full Text] [Related]
52. Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins. Şahin B; Gomis-Cebolla J; Güneş H; Ferré J PLoS One; 2018; 13(11):e0206813. PubMed ID: 30383811 [TBL] [Abstract][Full Text] [Related]
53. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. Jara S; Maduell P; Orduz S J Appl Microbiol; 2006 Jul; 101(1):117-24. PubMed ID: 16834598 [TBL] [Abstract][Full Text] [Related]
54. Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new delta-endotoxin gene. Li MS; Je YH; Lee IH; Chang JH; Roh JY; Kim HS; Oh HW; Boo KS Curr Microbiol; 2002 Oct; 45(4):299-302. PubMed ID: 12192530 [TBL] [Abstract][Full Text] [Related]
55. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Quesada-Moraga E; García-Tóvar E; Valverde-García P; Santiago-Alvarez C Microbiol Res; 2004; 159(1):59-71. PubMed ID: 15160608 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869 [TBL] [Abstract][Full Text] [Related]
57. Bacillus thuringiensis crystal proteins CRY1Ab and CRY1Fa share a high affinity binding site in Plutella xylostella (L.). Granero F; Ballester V; Ferré J Biochem Biophys Res Commun; 1996 Jul; 224(3):779-83. PubMed ID: 8713122 [TBL] [Abstract][Full Text] [Related]
58. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Wang G; Zhang J; Song F; Wu J; Feng S; Huang D Appl Microbiol Biotechnol; 2006 Oct; 72(5):924-30. PubMed ID: 16572346 [TBL] [Abstract][Full Text] [Related]
59. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
60. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. Xue J; Liang G; Crickmore N; Li H; He K; Song F; Feng X; Huang D; Zhang J FEMS Microbiol Lett; 2008 Mar; 280(1):95-101. PubMed ID: 18248430 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]