BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26070663)

  • 1. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis.
    Weckselblatt B; Hermetz KE; Rudd MK
    Genome Res; 2015 Jul; 25(7):937-47. PubMed ID: 26070663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation.
    Nilsson D; Pettersson M; Gustavsson P; Förster A; Hofmeister W; Wincent J; Zachariadis V; Anderlid BM; Nordgren A; Mäkitie O; Wirta V; Käller M; Vezzi F; Lupski JR; Nordenskjöld M; Lundberg ES; Carvalho CMB; Lindstrand A
    Hum Mutat; 2017 Feb; 38(2):180-192. PubMed ID: 27862604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations.
    Robberecht C; Voet T; Zamani Esteki M; Nowakowska BA; Vermeesch JR
    Genome Res; 2013 Mar; 23(3):411-8. PubMed ID: 23212949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements.
    Ballif BC; Wakui K; Gajecka M; Shaffer LG
    Hum Genet; 2004 Jan; 114(2):198-206. PubMed ID: 14579147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing.
    Imaizumi T; Yamamoto-Shimojima K; Yanagishita T; Ondo Y; Yamamoto T
    J Hum Genet; 2020 Sep; 65(9):735-741. PubMed ID: 32355308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of sequence motifs at the breakpoint junctions in three t(1;9)(p36.3;q34) and delineation of mechanisms involved in generating balanced translocations.
    Gajecka M; Pavlicek A; Glotzbach CD; Ballif BC; Jarmuz M; Jurka J; Shaffer LG
    Hum Genet; 2006 Nov; 120(4):519-26. PubMed ID: 16847692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes.
    Ou Z; Stankiewicz P; Xia Z; Breman AM; Dawson B; Wiszniewska J; Szafranski P; Cooper ML; Rao M; Shao L; South ST; Coleman K; Fernhoff PM; Deray MJ; Rosengren S; Roeder ER; Enciso VB; Chinault AC; Patel A; Kang SH; Shaw CA; Lupski JR; Cheung SW
    Genome Res; 2011 Jan; 21(1):33-46. PubMed ID: 21205869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms.
    Malhotra A; Lindberg M; Faust GG; Leibowitz ML; Clark RA; Layer RM; Quinlan AR; Hall IM
    Genome Res; 2013 May; 23(5):762-76. PubMed ID: 23410887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequent translocations occur between low copy repeats on chromosome 22q11.2 (LCR22s) and telomeric bands of partner chromosomes.
    Spiteri E; Babcock M; Kashork CD; Wakui K; Gogineni S; Lewis DA; Williams KM; Minoshima S; Sasaki T; Shimizu N; Potocki L; Pulijaal V; Shanske A; Shaffer LG; Morrow BE
    Hum Mol Genet; 2003 Aug; 12(15):1823-37. PubMed ID: 12874103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.
    Liu P; Erez A; Nagamani SC; Dhar SU; Kołodziejska KE; Dharmadhikari AV; Cooper ML; Wiszniewska J; Zhang F; Withers MA; Bacino CA; Campos-Acevedo LD; Delgado MR; Freedenberg D; Garnica A; Grebe TA; Hernández-Almaguer D; Immken L; Lalani SR; McLean SD; Northrup H; Scaglia F; Strathearn L; Trapane P; Kang SH; Patel A; Cheung SW; Hastings PJ; Stankiewicz P; Lupski JR; Bi W
    Cell; 2011 Sep; 146(6):889-903. PubMed ID: 21925314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.
    Chuzhanova N; Abeysinghe SS; Krawczak M; Cooper DN
    Hum Mutat; 2003 Sep; 22(3):245-51. PubMed ID: 12938089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements.
    Luo Y; Hermetz KE; Jackson JM; Mulle JG; Dodd A; Tsuchiya KD; Ballif BC; Shaffer LG; Cody JD; Ledbetter DH; Martin CL; Rudd MK
    Hum Mol Genet; 2011 Oct; 20(19):3769-78. PubMed ID: 21729882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common breakpoint on 11q23 in carriers of the constitutional t(11;22) translocation.
    Edelmann L; Spiteri E; McCain N; Goldberg R; Pandita RK; Duong S; Fox J; Blumenthal D; Lalani SR; Shaffer LG; Morrow BE
    Am J Hum Genet; 1999 Dec; 65(6):1608-16. PubMed ID: 10577914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin structural elements and chromosomal translocations in leukemia.
    Zhang Y; Rowley JD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1282-97. PubMed ID: 16893685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.
    D'Angelo CS; Gajecka M; Kim CA; Gentles AJ; Glotzbach CD; Shaffer LG; Koiffmann CP
    Hum Genet; 2009 Jun; 125(5-6):551-63. PubMed ID: 19271239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the complexity of simple chromosomal insertions by genome sequencing.
    Dong Z; Chau MHK; Zhang Y; Dai P; Zhu X; Leung TY; Kong X; Kwok YK; Stankiewicz P; Cheung SW; Choy KW
    Hum Genet; 2021 Feb; 140(2):361-380. PubMed ID: 32728808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination.
    Woodward KJ; Cundall M; Sperle K; Sistermans EA; Ross M; Howell G; Gribble SM; Burford DC; Carter NP; Hobson DL; Garbern JY; Kamholz J; Heng H; Hodes ME; Malcolm S; Hobson GM
    Am J Hum Genet; 2005 Dec; 77(6):966-87. PubMed ID: 16380909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent rearrangements in the proximal 15q11-q14 region: a new breakpoint cluster specific to unbalanced translocations.
    Mignon-Ravix C; Depetris D; Luciani JJ; Cuoco C; Krajewska-Walasek M; Missirian C; Collignon P; Delobel B; Croquette MF; Moncla A; Kroisel PM; Mattei MG
    Eur J Hum Genet; 2007 Apr; 15(4):432-40. PubMed ID: 17264869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.