These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 26071308)
1. Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Schubert M; Houdelet M; Kogel KH; Fischer R; Schillberg S; Nölke G Transgenic Res; 2015 Oct; 24(5):885-95. PubMed ID: 26071308 [TBL] [Abstract][Full Text] [Related]
2. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068 [TBL] [Abstract][Full Text] [Related]
3. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields. Sebők F; Dobolyi C; Zágoni D; Risa A; Krifaton C; Hartman M; Cserháti M; Szoboszlay S; Kriszt B Acta Microbiol Immunol Hung; 2016 Dec; 63(4):491-502. PubMed ID: 27842453 [TBL] [Abstract][Full Text] [Related]
4. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Masanga JO; Matheka JM; Omer RA; Ommeh SC; Monda EO; Alakonya AE Plant Cell Rep; 2015 Aug; 34(8):1379-87. PubMed ID: 25895735 [TBL] [Abstract][Full Text] [Related]
5. Identification and control of specific aflatoxin-producing fungi in stored maize seeds in awka using azadirachta indica (neem) and garcinia kola seeds. An A; Je A; Cb U; Mn I Pak J Pharm Sci; 2019 Jul; 32(4):1679-1686. PubMed ID: 31608890 [TBL] [Abstract][Full Text] [Related]
6. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081 [TBL] [Abstract][Full Text] [Related]
7. A Rapid and Nondestructive Method for Simultaneous Determination of Aflatoxigenic Fungus and Aflatoxin Contamination on Corn Kernels. Tao F; Yao H; Zhu F; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D J Agric Food Chem; 2019 May; 67(18):5230-5239. PubMed ID: 30986348 [TBL] [Abstract][Full Text] [Related]
8. Host Induced Gene Silencing Targeting Raruang Y; Omolehin O; Hu D; Wei Q; Han ZQ; Rajasekaran K; Cary JW; Wang K; Chen ZY Front Microbiol; 2020; 11():754. PubMed ID: 32411110 [TBL] [Abstract][Full Text] [Related]
9. Rapid detection of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification. Luo J; Vogel RF; Niessen L Food Microbiol; 2014 Dec; 44():142-8. PubMed ID: 25084656 [TBL] [Abstract][Full Text] [Related]
10. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Moghadam HD; Sani AM; Sangatash MM Toxicol Ind Health; 2016 Mar; 32(3):493-9. PubMed ID: 24193054 [TBL] [Abstract][Full Text] [Related]
11. Natural maize phenolic acids for control of aflatoxigenic fungi on maize. Nesci A; Gsponer N; Etcheverry M J Food Sci; 2007 Jun; 72(5):M180-5. PubMed ID: 17995741 [TBL] [Abstract][Full Text] [Related]
12. Metabolites Identified during Varied Doses of Falade TDO; Chrysanthopoulos PK; Hodson MP; Sultanbawa Y; Fletcher M; Darnell R; Korie S; Fox G Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29735944 [TBL] [Abstract][Full Text] [Related]
13. Tissue-specific components of resistance to Aspergillus ear rot of maize. Mideros SX; Windham GL; Williams WP; Nelson RJ Phytopathology; 2012 Aug; 102(8):787-93. PubMed ID: 22779745 [TBL] [Abstract][Full Text] [Related]
14. PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize. Somashekar D; Rati ER; Chandrashekar A Int J Food Microbiol; 2004 May; 93(1):101-7. PubMed ID: 15135586 [TBL] [Abstract][Full Text] [Related]
15. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana. Perrone G; Haidukowski M; Stea G; Epifani F; Bandyopadhyay R; Leslie JF; Logrieco A Food Microbiol; 2014 Aug; 41():52-9. PubMed ID: 24750813 [TBL] [Abstract][Full Text] [Related]
16. Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin B Mateo EM; Gómez JV; Gimeno-Adelantado JV; Romera D; Mateo-Castro R; Jiménez M Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):1039-1051. PubMed ID: 28349747 [TBL] [Abstract][Full Text] [Related]
17. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. Alborch L; Bragulat MR; Castellá G; Abarca ML; Cabañes FJ Food Microbiol; 2012 Oct; 32(1):97-103. PubMed ID: 22850379 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of the antifungal metabolites of Streptomyces philanthi RL-1-178 on aflatoxin degradation with its application to prevent aflatoxigenic fungi in stored maize grains and identification of the bioactive compound. Boukaew S; Prasertsan P; Mahasawat P; Sriyatep T; Petlamul W World J Microbiol Biotechnol; 2022 Nov; 39(1):24. PubMed ID: 36422721 [TBL] [Abstract][Full Text] [Related]
19. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Wicklow DT; Roth S; Deyrup ST; Gloer JB Mycol Res; 2005 May; 109(Pt 5):610-8. PubMed ID: 16018316 [TBL] [Abstract][Full Text] [Related]