These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 26071590)
21. Structure of 2-haloacid dehalogenase from Pseudomonas syringae pv. tomato DC3000. Hou Z; Zhang H; Li M; Chang W Acta Crystallogr D Biol Crystallogr; 2013 Jun; 69(Pt 6):1108-14. PubMed ID: 23695255 [TBL] [Abstract][Full Text] [Related]
22. Crystal structure of a putative CN hydrolase from yeast. Kumaran D; Eswaramoorthy S; Gerchman SE; Kycia H; Studier FW; Swaminathan S Proteins; 2003 Aug; 52(2):283-91. PubMed ID: 12833551 [TBL] [Abstract][Full Text] [Related]
23. Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily. Stewart AJ; Schmid R; Blindauer CA; Paisey SJ; Farquharson C Protein Eng; 2003 Dec; 16(12):889-95. PubMed ID: 14983068 [TBL] [Abstract][Full Text] [Related]
24. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily. Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709 [TBL] [Abstract][Full Text] [Related]
25. The structural domains of Pseudomonas aeruginosa phosphorylcholine phosphatase cooperate in substrate hydrolysis: 3D structure and enzymatic mechanism. Infantes L; Otero LH; Beassoni PR; Boetsch C; Lisa AT; Domenech CE; Albert A J Mol Biol; 2012 Nov; 423(4):503-14. PubMed ID: 22922065 [TBL] [Abstract][Full Text] [Related]
26. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase. Biswas T; Yi L; Aggarwal P; Wu J; Rubin JR; Stuckey JA; Woodard RW; Tsodikov OV J Biol Chem; 2009 Oct; 284(44):30594-603. PubMed ID: 19726684 [TBL] [Abstract][Full Text] [Related]
27. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) . Nguyen HH; Wang L; Huang H; Peisach E; Dunaway-Mariano D; Allen KN Biochemistry; 2010 Feb; 49(6):1082-92. PubMed ID: 20050614 [TBL] [Abstract][Full Text] [Related]
29. Defluorination Capability of l-2-Haloacid Dehalogenases in the HAD-Like Hydrolase Superfamily Correlates with Active Site Compactness. Chan PWY; Chakrabarti N; Ing C; Halgas O; To TKW; Wälti M; Petit AP; Tran C; Savchenko A; Yakunin AF; Edwards EA; Pomès R; Pai EF Chembiochem; 2022 Jan; 23(1):e202100414. PubMed ID: 34643018 [TBL] [Abstract][Full Text] [Related]
30. Detection of active sorbitol-6-phosphate phosphatase in the haloacid dehalogenase-like hydrolase superfamily. Chin T; Ikeuchi M J Gen Appl Microbiol; 2018 Nov; 64(5):248-252. PubMed ID: 29743459 [TBL] [Abstract][Full Text] [Related]
31. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616 [TBL] [Abstract][Full Text] [Related]
33. Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphoruscarbon bond cleavage. Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN Bioorg Chem; 2006 Dec; 34(6):394-409. PubMed ID: 17070898 [TBL] [Abstract][Full Text] [Related]
34. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558 [TBL] [Abstract][Full Text] [Related]
35. Evolutionary and structural analyses of mammalian haloacid dehalogenase-type phosphatases AUM and chronophin provide insight into the basis of their different substrate specificities. Seifried A; Knobloch G; Duraphe PS; Segerer G; Manhard J; Schindelin H; Schultz J; Gohla A J Biol Chem; 2014 Feb; 289(6):3416-31. PubMed ID: 24338473 [TBL] [Abstract][Full Text] [Related]
36. Crystal structures of the substrate free-enzyme, and reaction intermediate of the HAD superfamily member, haloacid dehalogenase DehIVa from Burkholderia cepacia MBA4. Schmidberger JW; Wilce JA; Tsang JS; Wilce MC J Mol Biol; 2007 May; 368(3):706-17. PubMed ID: 17368477 [TBL] [Abstract][Full Text] [Related]
37. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate. Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392 [TBL] [Abstract][Full Text] [Related]
38. The Saccharomyces cerevisiae type 2A protein phosphatase Pph22p is biochemically different from mammalian PP2A. Zabrocki P; Swiatek W; Sugajska E; Thevelein JM; Wera S; Zolnierowicz S Eur J Biochem; 2002 Jul; 269(14):3372-82. PubMed ID: 12135475 [TBL] [Abstract][Full Text] [Related]
39. Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. Hesseler M; Bogdanović X; Hidalgo A; Berenguer J; Palm GJ; Hinrichs W; Bornscheuer UT Appl Microbiol Biotechnol; 2011 Aug; 91(4):1049-60. PubMed ID: 21603934 [TBL] [Abstract][Full Text] [Related]
40. Chronophin dimerization is required for proper positioning of its substrate specificity loop. Kestler C; Knobloch G; Tessmer I; Jeanclos E; Schindelin H; Gohla A J Biol Chem; 2014 Jan; 289(5):3094-103. PubMed ID: 24338687 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]