These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26071628)

  • 41. Does water content or flow rate control colloid transport in unsaturated porous media?
    Knappenberger T; Flury M; Mattson ED; Harsh JB
    Environ Sci Technol; 2014 Apr; 48(7):3791-9. PubMed ID: 24588072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization.
    Li Z; Zhang D; Li X
    Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity.
    Sanz-Prat A; Lu C; Amos RT; Finkel M; Blowes DW; Cirpka OA
    J Contam Hydrol; 2016 Sep; 192():35-49. PubMed ID: 27343827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
    Bradford SA; Torkzaban S; Leij F; Simunek J
    J Contam Hydrol; 2015 Oct; 181():141-52. PubMed ID: 25913320
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Concentration dependent transport of colloids in saturated porous media.
    Bradford SA; Bettahar M
    J Contam Hydrol; 2006 Jan; 82(1-2):99-117. PubMed ID: 16290313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media.
    Sun N; Elimelech M; Sun NZ; Ryan JN
    J Contam Hydrol; 2001 Jun; 49(3-4):173-99. PubMed ID: 11411396
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media.
    Gentile GJ; Fidalgo de Cortalezzi MM
    J Contam Hydrol; 2016 Aug; 191():66-75. PubMed ID: 27258326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-dimensional experimental investigation and simulation on the transport characteristics of heterogeneous colloidal Mg(OH)
    Li B; Zhang C; Li Y; Wen C; Dong J; Yao M; Ren L
    J Contam Hydrol; 2018 Nov; 218():34-43. PubMed ID: 30361117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.
    Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS
    Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A two-way coupled model for the co-transport of two different colloids in porous media.
    Seetha N; Hassanizadeh SM
    J Contam Hydrol; 2022 Jan; 244():103922. PubMed ID: 34864473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sherwood correlation for dissolution of pooled NAPL in porous media.
    Aydin Sarikurt D; Gokdemir C; Copty NK
    J Contam Hydrol; 2017 Nov; 206():67-74. PubMed ID: 29033219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Colloidal transport and deposition through dense vegetation.
    Yu C; Duan P; Barry DA; Johnson WP; Chen L; Yu Z; Sun Y; Li Y
    Chemosphere; 2022 Jan; 287(Pt 3):132197. PubMed ID: 34547559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.
    Hibi Y; Tomigashi A; Hirose M
    J Contam Hydrol; 2015 Dec; 183():121-34. PubMed ID: 26583741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources.
    Chen K; Zhan H; Zhou R
    J Contam Hydrol; 2016 Jul; 190():44-57. PubMed ID: 27153362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interplay of Natural Organic Matter with Flow Rate and Particle Size on Colloid Transport: Experimentation, Visualization, and Modeling.
    Yang X; Zhang Y; Chen F; Yang Y
    Environ Sci Technol; 2015 Nov; 49(22):13385-93. PubMed ID: 26469806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong release of viruses in fracture flow in response to a perturbation in ionic strength: Filtration/retention tests and modeling.
    Masciopinto C; Visino F
    Water Res; 2017 Dec; 126():240-251. PubMed ID: 28961492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fe-colloid cotransport through saturated porous media under different hydrochemical and hydrodynamic conditions.
    Li X; Zhang W; Qin Y; Ma T; Zhou J; Du S
    Sci Total Environ; 2019 Jan; 647():494-506. PubMed ID: 30086501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media.
    Cremer CJ; Graf T
    J Contam Hydrol; 2015 Feb; 173():69-82. PubMed ID: 25555221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.