BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26071692)

  • 21. Intracellular pH sensors based on surface-enhanced raman scattering.
    Talley CE; Jusinski L; Hollars CW; Lane SM; Huser T
    Anal Chem; 2004 Dec; 76(23):7064-8. PubMed ID: 15571360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
    Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D
    Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
    Wu D; Chen Y; Hou S; Fang W; Duan H
    Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette.
    Guo J; Sesena Rubfiaro A; Lai Y; Moscoso J; Chen F; Liu Y; Wang X; He J
    Analyst; 2020 Jul; 145(14):4852-4859. PubMed ID: 32542257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.
    Kong KV; Dinish US; Lau WK; Olivo M
    Biosens Bioelectron; 2014 Apr; 54():135-40. PubMed ID: 24269755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured surfaces and assemblies as SERS media.
    Ko H; Singamaneni S; Tsukruk VV
    Small; 2008 Oct; 4(10):1576-99. PubMed ID: 18844309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies.
    Bando K; Zhang Z; Graham D; Faulds K; Fujita K; Kawata S
    Analyst; 2020 Aug; 145(17):5768-5775. PubMed ID: 32661524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification.
    Han Y; Wu SR; Tian XD; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28965-28974. PubMed ID: 32380829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Branched Au Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Sensing of Intracellular pH and Extracellular pH Gradients.
    Zhao X; Campbell S; Wallace GQ; Claing A; Bazuin CG; Masson JF
    ACS Sens; 2020 Jul; 5(7):2155-2167. PubMed ID: 32515184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of 4-Mercaptobenzoic Acid Surface-Enhanced Raman Spectroscopy-Based Methods for pH Determination in Cells.
    Scarpitti BT; Morrison AM; Buyanova M; Schultz ZD
    Appl Spectrosc; 2020 Nov; 74(11):1423-1432. PubMed ID: 32731744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.
    Chen P; Wang Z; Zong S; Chen H; Zhu D; Zhong Y; Cui Y
    Anal Bioanal Chem; 2014 Oct; 406(25):6337-46. PubMed ID: 25120182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of effect of chemotherapeutic agents to cancer cells on gold nanoflower patterned substrate using surface-enhanced Raman scattering and cyclic voltammetry.
    El-Said WA; Kim TH; Kim H; Choi JW
    Biosens Bioelectron; 2010 Dec; 26(4):1486-92. PubMed ID: 20728335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanoflower-based surface-enhanced Raman probes for pH mapping of tumor cell microenviroment.
    Xie M; Li F; Gu P; Wang F; Qu Z; Li J; Wang L; Zuo X; Zhang X; Shen J
    Cell Prolif; 2019 Jul; 52(4):e12618. PubMed ID: 31033056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.