These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26071722)

  • 1. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing.
    Zhang Y; May V
    J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density matrix based microscopic theory of molecule metal-nanoparticle interactions: linear absorbance and plasmon enhancement of intermolecular excitation energy transfer.
    Kyas G; May V
    J Chem Phys; 2011 Jan; 134(3):034701. PubMed ID: 21261378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of plasmon enhanced interfacial electron transfer.
    Wang L; May V
    J Phys Condens Matter; 2015 Apr; 27(13):134209. PubMed ID: 25764984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced dynamics in a molecule metal nanoparticle complex: mean-field approximation versus exact treatment of the interaction.
    Zelinskyy Y; Zhang Y; May V
    J Chem Phys; 2013 Mar; 138(11):114704. PubMed ID: 23534650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control.
    Neuhauser D; Lopata K
    J Chem Phys; 2007 Oct; 127(15):154715. PubMed ID: 17949199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation dynamics of a quantum emitter resonantly coupled to a coherent state of a localized surface plasmon.
    Nerkararyan KV; Bozhevolnyi SI
    Faraday Discuss; 2015; 178():295-306. PubMed ID: 25736718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Discrete Interaction Model/Quantum Mechanical Method for Simulating Plasmon-Enhanced Two-Photon Absorption.
    Hu Z; Jensen L
    J Chem Theory Comput; 2018 Nov; 14(11):5896-5903. PubMed ID: 30351932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of single photon on demand from a single molecule source.
    He Y; Barkai E
    Phys Chem Chem Phys; 2006 Nov; 8(43):5056-68. PubMed ID: 17091156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degenerate parametric down-conversion facilitated by exciton-plasmon polariton states in a nonlinear plasmonic cavity.
    Piryatinski A; Sukharev M
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36693276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission properties and photon statistics of a single quantum dot laser.
    Ritter S; Gartner P; Gies C; Jahnke F
    Opt Express; 2010 May; 18(10):9909-21. PubMed ID: 20588843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap.
    Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S
    Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient coupling of single photons to single plasmons.
    Celebrano M; Lettow R; Kukura P; Agio M; Renn A; Götzinger S; Sandoghdar V
    Opt Express; 2010 Jun; 18(13):13829-35. PubMed ID: 20588515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces.
    Hyldgaard P
    J Phys Condens Matter; 2012 Oct; 24(42):424219. PubMed ID: 23032101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-assisted transmission of entangled photons.
    Altewischer E; van Exter MP; Woerdman JP
    Nature; 2002 Jul; 418(6895):304-6. PubMed ID: 12124618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.