These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 26071899)
21. Reactive or transgenic increase in microglial TYROBP reveals a TREM2-independent TYROBP-APOE link in wild-type and Alzheimer's-related mice. Audrain M; Haure-Mirande JV; Mleczko J; Wang M; Griffin JK; St George-Hyslop PH; Fraser P; Zhang B; Gandy S; Ehrlich ME Alzheimers Dement; 2021 Feb; 17(2):149-163. PubMed ID: 33314529 [TBL] [Abstract][Full Text] [Related]
22. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. Casali BT; Reed-Geaghan EG; Landreth GE J Neuroinflammation; 2018 Feb; 15(1):43. PubMed ID: 29448961 [TBL] [Abstract][Full Text] [Related]
23. The Continuing Failure of Bexarotene in Alzheimer's Disease Mice. Balducci C; Paladini A; Micotti E; Tolomeo D; La Vitola P; Grigoli E; Richardson JC; Forloni G J Alzheimers Dis; 2015; 46(2):471-82. PubMed ID: 25777514 [TBL] [Abstract][Full Text] [Related]
24. Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer's disease. Kawahara K; Suenobu M; Ohtsuka H; Kuniyasu A; Sugimoto Y; Nakagomi M; Fukasawa H; Shudo K; Nakayama H J Alzheimers Dis; 2014; 42(2):587-605. PubMed ID: 24916544 [TBL] [Abstract][Full Text] [Related]
26. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer's disease. Mariani MM; Malm T; Lamb R; Jay TR; Neilson L; Casali B; Medarametla L; Landreth GE Sci Rep; 2017 Feb; 7():42270. PubMed ID: 28205585 [TBL] [Abstract][Full Text] [Related]
27. Omega-3 Fatty Acids Augment the Actions of Nuclear Receptor Agonists in a Mouse Model of Alzheimer's Disease. Casali BT; Corona AW; Mariani MM; Karlo JC; Ghosal K; Landreth GE J Neurosci; 2015 Jun; 35(24):9173-81. PubMed ID: 26085639 [TBL] [Abstract][Full Text] [Related]
28. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Tachibana M; Shinohara M; Yamazaki Y; Liu CC; Rogers J; Bu G; Kanekiyo T Exp Neurol; 2016 Mar; 277():1-9. PubMed ID: 26688581 [TBL] [Abstract][Full Text] [Related]
29. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer's disease model mice. Sun Y; Fan J; Zhu Z; Guo X; Zhou T; Duan W; Shen X Eur J Pharmacol; 2015 Sep; 762():202-13. PubMed ID: 26026644 [TBL] [Abstract][Full Text] [Related]
30. TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia. Kim SM; Mun BR; Lee SJ; Joh Y; Lee HY; Ji KY; Choi HR; Lee EH; Kim EM; Jang JH; Song HW; Mook-Jung I; Choi WS; Kang HS Sci Rep; 2017 Sep; 7(1):11118. PubMed ID: 28894284 [TBL] [Abstract][Full Text] [Related]
31. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Collins JM; King AE; Woodhouse A; Kirkcaldie MT; Vickers JC Exp Neurol; 2015 May; 267():219-29. PubMed ID: 25747037 [TBL] [Abstract][Full Text] [Related]
32. High-affinity interactions and signal transduction between Aβ oligomers and TREM2. Lessard CB; Malnik SL; Zhou Y; Ladd TB; Cruz PE; Ran Y; Mahan TE; Chakrabaty P; Holtzman DM; Ulrich JD; Colonna M; Golde TE EMBO Mol Med; 2018 Nov; 10(11):. PubMed ID: 30341064 [TBL] [Abstract][Full Text] [Related]
33. The Role of APOE and TREM2 in Alzheimer's Disease-Current Understanding and Perspectives. Wolfe CM; Fitz NF; Nam KN; Lefterov I; Koldamova R Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30587772 [TBL] [Abstract][Full Text] [Related]
34. A naturally occurring rexinoid, honokiol, can serve as a regulator of various retinoid x receptor heterodimers. Kotani H; Tanabe H; Mizukami H; Amagaya S; Inoue M Biol Pharm Bull; 2012; 35(1):1-9. PubMed ID: 22223330 [TBL] [Abstract][Full Text] [Related]
35. Early Treatment Critical: Bexarotene Reduces Amyloid-Beta Burden In Silico. Rosenthal J; Belfort G; Isaacson D PLoS One; 2016; 11(4):e0153150. PubMed ID: 27073866 [TBL] [Abstract][Full Text] [Related]
36. The novel function of bexarotene for neurological diseases. Liu Y; Wang P; Jin G; Shi P; Zhao Y; Guo J; Yin Y; Shao Q; Li P; Yang P Ageing Res Rev; 2023 Sep; 90():102021. PubMed ID: 37495118 [TBL] [Abstract][Full Text] [Related]
37. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models. Martiskainen H; Viswanathan J; Nykänen NP; Kurki M; Helisalmi S; Natunen T; Sarajärvi T; Kurkinen KM; Pursiheimo JP; Rauramaa T; Alafuzoff I; Jääskeläinen JE; Leinonen V; Soininen H; Haapasalo A; Huttunen HJ; Hiltunen M Neurobiol Aging; 2015 Feb; 36(2):1221.e15-28. PubMed ID: 25281018 [TBL] [Abstract][Full Text] [Related]
38. The Alzheimer's disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. Jendresen C; Årskog V; Daws MR; Nilsson LN J Neuroinflammation; 2017 Mar; 14(1):59. PubMed ID: 28320424 [TBL] [Abstract][Full Text] [Related]
39. Bexarotene Does Not Clear Amyloid Beta Plaques but Delays Fibril Growth: Molecular Mechanisms. Huy PDQ; Thai NQ; Bednarikova Z; Phuc LH; Linh HQ; Gazova Z; Li MS ACS Chem Neurosci; 2017 Sep; 8(9):1960-1969. PubMed ID: 28689412 [TBL] [Abstract][Full Text] [Related]
40. The RXR agonist bexarotene improves cholesterol homeostasis and inhibits atherosclerosis progression in a mouse model of mixed dyslipidemia. Lalloyer F; Fiévet C; Lestavel S; Torpier G; van der Veen J; Touche V; Bultel S; Yous S; Kuipers F; Paumelle R; Fruchart JC; Staels B; Tailleux A Arterioscler Thromb Vasc Biol; 2006 Dec; 26(12):2731-7. PubMed ID: 17008586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]