These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 26072143)
1. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. Du B; Wei Z; Wang Z; Wang X; Peng X; Du B; Chen R; Zhu L; He G J Plant Physiol; 2015 Jul; 183():13-22. PubMed ID: 26072143 [TBL] [Abstract][Full Text] [Related]
2. Genomics of interaction between the brown planthopper and rice. Jing S; Zhao Y; Du B; Chen R; Zhu L; He G Curr Opin Insect Sci; 2017 Feb; 19():82-87. PubMed ID: 28521948 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic and proteomic responses to brown plant hopper (Nilaparvata lugens) in cultivated and Bt-transgenic rice (Oryza sativa) and wild rice (O. rufipogon). Liu Y; Wang W; Li Y; Liu F; Han W; Li J J Proteomics; 2021 Feb; 232():104051. PubMed ID: 33217583 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores. Li Y; Cheah BH; Fang YF; Kuang YH; Lin SC; Liao CT; Huang SH; Lin YF; Chuang WP BMC Plant Biol; 2021 Jun; 21(1):306. PubMed ID: 34193042 [TBL] [Abstract][Full Text] [Related]
5. Metabolic responses of brown planthoppers to IR56 resistant rice cultivar containing multiple resistance genes. Yue L; Kang K; Zhang W J Insect Physiol; 2019; 113():67-76. PubMed ID: 30291858 [TBL] [Abstract][Full Text] [Related]
6. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Kang K; Yue L; Xia X; Liu K; Zhang W Metabolomics; 2019 Apr; 15(4):62. PubMed ID: 30976994 [TBL] [Abstract][Full Text] [Related]
7. Brown planthoppers manipulate rice sugar transporters to benefit their own feeding. Yu L; Chen Y; Zeng X; Lou Y; Baldwin IT; Li R Curr Biol; 2024 Jul; 34(13):2990-2996.e4. PubMed ID: 38870934 [TBL] [Abstract][Full Text] [Related]
8. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. Li C; Luo C; Zhou Z; Wang R; Ling F; Xiao L; Lin Y; Chen H BMC Plant Biol; 2017 Feb; 17(1):57. PubMed ID: 28245796 [TBL] [Abstract][Full Text] [Related]
9. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Uawisetwathana U; Chevallier OP; Xu Y; Kamolsukyeunyong W; Nookaew I; Somboon T; Toojinda T; Vanavichit A; Goodacre R; Elliott CT; Karoonuthaisiri N Metabolomics; 2019 Nov; 15(12):151. PubMed ID: 31741127 [TBL] [Abstract][Full Text] [Related]
10. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling. Wang Y; Guo H; Li H; Zhang H; Miao X BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240 [TBL] [Abstract][Full Text] [Related]
11. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. Lv W; Du B; Shangguan X; Zhao Y; Pan Y; Zhu L; He Y; He G BMC Genomics; 2014 Aug; 15(1):674. PubMed ID: 25109872 [TBL] [Abstract][Full Text] [Related]
12. Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice. Zhang J; Guan W; Huang C; Hu Y; Chen Y; Guo J; Zhou C; Chen R; Du B; Zhu L; Huanhan D; He G BMC Genomics; 2019 Aug; 20(1):682. PubMed ID: 31464583 [TBL] [Abstract][Full Text] [Related]
13. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. Tan J; Wu Y; Guo J; Li H; Zhu L; Chen R; He G; Du B BMC Genomics; 2020 Feb; 21(1):144. PubMed ID: 32041548 [TBL] [Abstract][Full Text] [Related]
14. Damage of brown planthopper (BPH) Deng QQ; Ye M; Wu XB; Song J; Wang J; Chen LN; Zhu ZY; Xie J Plant Signal Behav; 2022 Dec; 17(1):2096790. PubMed ID: 35876337 [TBL] [Abstract][Full Text] [Related]
15. Silencing of miR156 confers enhanced resistance to brown planthopper in rice. Ge Y; Han J; Zhou G; Xu Y; Ding Y; Shi M; Guo C; Wu G Planta; 2018 Oct; 248(4):813-826. PubMed ID: 29934776 [TBL] [Abstract][Full Text] [Related]
16. Silicon amendment to rice plants impairs sucking behaviors and population growth in the phloem feeder Nilaparvata lugens (Hemiptera: Delphacidae). Yang L; Han Y; Li P; Wen L; Hou M Sci Rep; 2017 Apr; 7(1):1101. PubMed ID: 28439066 [TBL] [Abstract][Full Text] [Related]
17. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Hao P; Liu C; Wang Y; Chen R; Tang M; Du B; Zhu L; He G Plant Physiol; 2008 Apr; 146(4):1810-20. PubMed ID: 18245456 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants. Yang Z; Zhang F; He Q; He G Arch Insect Biochem Physiol; 2005 Jun; 59(2):59-66. PubMed ID: 15898115 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). Liu J; Du H; Ding X; Zhou Y; Xie P; Wu J Pest Manag Sci; 2017 Dec; 73(12):2559-2568. PubMed ID: 28664567 [TBL] [Abstract][Full Text] [Related]
20. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): a proteomic approach. Wei Z; Hu W; Lin Q; Cheng X; Tong M; Zhu L; Chen R; He G Proteomics; 2009 May; 9(10):2798-808. PubMed ID: 19405033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]