BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26072363)

  • 1. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of POSS Type on the Shape Memory Properties of Epoxy-Based Nanocomposites.
    Bram AI; Gouzman I; Bolker A; Eliaz N; Verker R
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32937814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterilization effects on poly(glycerol dodecanedioate): A biodegradable shape memory elastomer for biomedical applications.
    Ramaraju H; McAtee AM; Akman RE; Verga AS; Bocks ML; Hollister SJ
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):958-970. PubMed ID: 36479954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water.
    Zhang B; DeBartolo JE; Song J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.
    Filion TM; Xu J; Prasad ML; Song J
    Biomaterials; 2011 Feb; 32(4):985-91. PubMed ID: 21040968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of bio-compatible shape memory polymers with potential applications to endovascular embolization of intracranial aneurysms.
    Kunkel R; Laurence D; Wang J; Robinson D; Scherrer J; Wu Y; Bohnstedt B; Chien A; Liu Y; Lee CH
    J Mech Behav Biomed Mater; 2018 Dec; 88():422-430. PubMed ID: 30216932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nasolacrimal stent with shape memory as an advanced alternative to silicone products.
    Park JY; Lee JB; Shin WB; Kang ML; Shin YC; Son DH; Yi SW; Yoon JK; Kim JY; Ko J; Kim CS; Yoon JS; Sung HJ
    Acta Biomater; 2020 Jan; 101():273-284. PubMed ID: 31707084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications.
    Yakacki CM; Shandas R; Lanning C; Rech B; Eckstein A; Gall K
    Biomaterials; 2007 May; 28(14):2255-63. PubMed ID: 17296222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The loading of C-type natriuretic peptides improved hemocompatibility and vascular regeneration of electrospun poly(ε-caprolactone) grafts.
    Li J; Zhuo N; Zhang J; Sun Q; Si J; Wang K; Zhi D
    Acta Biomater; 2022 Oct; 151():304-316. PubMed ID: 36002127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma.
    Fulati A; Uto K; Iwanaga M; Watanabe M; Ebara M
    Adv Healthc Mater; 2022 Jul; 11(13):e2200050. PubMed ID: 35385611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications.
    Yang X; Han Z; Jia C; Wang T; Wang X; Hu F; Zhang H; Zhao J; Zhang X
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous inorganic-organic shape memory polymers.
    Zhang D; Burkes WL; Schoener CA; Grunlan MA
    Polymer (Guildf); 2012 Jun; 53(14):2935-2941. PubMed ID: 22956854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network.
    Defize T; Riva R; Raquez JM; Dubois P; Jérôme C; Alexandre M
    Macromol Rapid Commun; 2011 Aug; 32(16):1264-9. PubMed ID: 21692124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape memory polymers with visible and near-infrared imaging modalities: Synthesis, characterization and
    Weems AC; Raymond JE; Easley AD; Wierzbicki MA; Gustafson T; Monroe M; Maitland DJ
    RSC Adv; 2017; 7(32):19742-19753. PubMed ID: 30288254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.