BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26072478)

  • 1. Metabolome-scale de novo pathway reconstruction using regioisomer-sensitive graph alignments.
    Yamanishi Y; Tabei Y; Kotera M
    Bioinformatics; 2015 Jun; 31(12):i161-70. PubMed ID: 26072478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach.
    Kotera M; Tabei Y; Yamanishi Y; Muto A; Moriya Y; Tokimatsu T; Goto S
    Bioinformatics; 2014 Jun; 30(12):i165-74. PubMed ID: 24931980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.
    Kotera M; Tabei Y; Yamanishi Y; Tokimatsu T; Goto S
    Bioinformatics; 2013 Jul; 29(13):i135-44. PubMed ID: 23812977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction.
    Tabei Y; Yamanishi Y; Kotera M
    Bioinformatics; 2016 Jun; 32(12):i278-i287. PubMed ID: 27307627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies.
    Quell JD; Römisch-Margl W; Colombo M; Krumsiek J; Evans AM; Mohney R; Salomaa V; de Faire U; Groop LC; Agakov F; Looker HC; McKeigue P; Colhoun HM; Kastenmüller G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():58-67. PubMed ID: 28479069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MUCHA: multiple chemical alignment algorithm to identify building block substructures of orphan secondary metabolites.
    Kotera M; Tokimatsu T; Kanehisa M; Goto S
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S1. PubMed ID: 22373367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic pathfinding using RPAIR annotation.
    Faust K; Croes D; van Helden J
    J Mol Biol; 2009 May; 388(2):390-414. PubMed ID: 19281817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.
    Dhanasekaran AR; Pearson JL; Ganesan B; Weimer BC
    BMC Bioinformatics; 2015 Feb; 16(1):62. PubMed ID: 25887958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument?
    Bruno C; Patin F; Bocca C; Nadal-Desbarats L; Bonnier F; Reynier P; Emond P; Vourc'h P; Joseph-Delafont K; Corcia P; Andres CR; Blasco H
    J Pharm Biomed Anal; 2018 Jan; 148():273-279. PubMed ID: 29059617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds.
    Nakamura M; Hachiya T; Saito Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S8. PubMed ID: 23282285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COVRECON: automated integration of genome- and metabolome-scale network reconstruction and data-driven inverse modeling of metabolic interaction networks.
    Li J; Waldherr S; Weckwerth W
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37402625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient searching and annotation of metabolic networks using chemical similarity.
    Pertusi DA; Stine AE; Broadbelt LJ; Tyo KE
    Bioinformatics; 2015 Apr; 31(7):1016-24. PubMed ID: 25417203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemicalome and metabolome matching approach to elucidating biological metabolic networks of complex mixtures.
    Gong P; Cui N; Wu L; Liang Y; Hao K; Xu X; Tang W; Wang G; Hao H
    Anal Chem; 2012 Mar; 84(6):2995-3002. PubMed ID: 22356250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.
    Chen W; Hendrix W; Samatova NF
    J Comput Biol; 2017 Dec; 24(12):1195-1211. PubMed ID: 28891687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PathPred: an enzyme-catalyzed metabolic pathway prediction server.
    Moriya Y; Shigemizu D; Hattori M; Tokimatsu T; Kotera M; Goto S; Kanehisa M
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W138-43. PubMed ID: 20435670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways.
    Junot C; Fenaille F; Colsch B; Bécher F
    Mass Spectrom Rev; 2014; 33(6):471-500. PubMed ID: 24288070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NICEpath: Finding metabolic pathways in large networks through atom-conserving substrate-product pairs.
    Hafner J; Hatzimanikatis V
    Bioinformatics; 2021 Oct; 37(20):3560-3568. PubMed ID: 34003971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds.
    Mu F; Unkefer CJ; Unkefer PJ; Hlavacek WS
    Bioinformatics; 2011 Jun; 27(11):1537-45. PubMed ID: 21478194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomic network analysis of estrogen-stimulated MCF-7 cells: a comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis.
    Maertens A; Bouhifd M; Zhao L; Odwin-DaCosta S; Kleensang A; Yager JD; Hartung T
    Arch Toxicol; 2017 Jan; 91(1):217-230. PubMed ID: 27039105
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.