These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26072484)

  • 1. Identification of causal genes for complex traits.
    Hormozdiari F; Kichaev G; Yang WY; Pasaniuc B; Eskin E
    Bioinformatics; 2015 Jun; 31(12):i206-13. PubMed ID: 26072484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying causal variants at loci with multiple signals of association.
    Hormozdiari F; Kostem E; Kang EY; Pasaniuc B; Eskin E
    Genetics; 2014 Oct; 198(2):497-508. PubMed ID: 25104515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying causal variants by fine mapping across multiple studies.
    LaPierre N; Taraszka K; Huang H; He R; Hormozdiari F; Eskin E
    PLoS Genet; 2021 Sep; 17(9):e1009733. PubMed ID: 34543273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance Testing for Allelic Heterogeneity.
    Deng Y; Pan W
    Genetics; 2018 Sep; 210(1):25-32. PubMed ID: 29959179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging allelic imbalance to refine fine-mapping for eQTL studies.
    Zou J; Hormozdiari F; Jew B; Castel SE; Lappalainen T; Ernst J; Sul JH; Eskin E
    PLoS Genet; 2019 Dec; 15(12):e1008481. PubMed ID: 31834882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying candidate causal variants via trans-population fine-mapping.
    Teo YY; Ong RT; Sim X; Tai ES; Chia KS
    Genet Epidemiol; 2010 Nov; 34(7):653-64. PubMed ID: 20839287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing genetic variants for causality on the basis of preferential linkage disequilibrium.
    Zhu Q; Ge D; Heinzen EL; Dickson SP; Urban TJ; Zhu M; Maia JM; He M; Zhao Q; Shianna KV; Goldstein DB
    Am J Hum Genet; 2012 Sep; 91(3):422-34. PubMed ID: 22939045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations.
    Knief U; Schielzeth H; Backström N; Hemmrich-Stanisak G; Wittig M; Franke A; Griffith SC; Ellegren H; Kempenaers B; Forstmeier W
    Mol Ecol; 2017 Mar; 26(5):1285-1305. PubMed ID: 28100011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
    Kichaev G; Yang WY; Lindstrom S; Hormozdiari F; Eskin E; Price AL; Kraft P; Pasaniuc B
    PLoS Genet; 2014 Oct; 10(10):e1004722. PubMed ID: 25357204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. varLD: a program for quantifying variation in linkage disequilibrium patterns between populations.
    Ong RT; Teo YY
    Bioinformatics; 2010 May; 26(9):1269-70. PubMed ID: 20308177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarker: An Unbiased, Association-Data-Driven Strategy to Evaluate Gene Prioritization Algorithms.
    Fine RS; Pers TH; Amariuta T; Raychaudhuri S; Hirschhorn JN
    Am J Hum Genet; 2019 Jun; 104(6):1025-1039. PubMed ID: 31056107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unifying framework for joint trait analysis under a non-infinitesimal model.
    Johnson R; Shi H; Pasaniuc B; Sankararaman S
    Bioinformatics; 2018 Jul; 34(13):i195-i201. PubMed ID: 29949958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of a minimal region around a genetic association signal that contains the causal variant.
    Bochdanovits Z; Simón-Sánchez J; Jonker M; Hoogendijk WJ; van der Vaart A; Heutink P
    Eur J Hum Genet; 2014 Feb; 22(2):238-42. PubMed ID: 23736218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CandiSNPer: a web tool for the identification of candidate SNPs for causal variants.
    Schmitt AO; Assmus J; Bortfeldt RH; Brockmann GA
    Bioinformatics; 2010 Apr; 26(7):969-70. PubMed ID: 20172942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding genome-transcriptome-phenome association with structured association mapping and visualization in GenAMap.
    Curtis RE; Yin J; Kinnaird P; Xing EP
    Pac Symp Biocomput; 2012; ():327-38. PubMed ID: 22174288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure.
    Yoo YJ; Sun L; Poirier JG; Paterson AD; Bull SB
    Genet Epidemiol; 2017 Feb; 41(2):108-121. PubMed ID: 27885705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle.
    Tenghe AMM; Bouwman AC; Berglund B; Strandberg E; de Koning DJ; Veerkamp RF
    J Dairy Sci; 2016 Jul; 99(7):5470-5485. PubMed ID: 27157577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical method for region-based meta-analysis of genome-wide association studies in genetically diverse populations.
    Wang X; Liu X; Sim X; Xu H; Khor CC; Ong RT; Tay WT; Suo C; Poh WT; Ng DP; Liu J; Aung T; Chia KS; Wong TY; Tai ES; Teo YY
    Eur J Hum Genet; 2012 Apr; 20(4):469-75. PubMed ID: 22126751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.