These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 26072486)
1. Improving compound-protein interaction prediction by building up highly credible negative samples. Liu H; Sun J; Guan J; Zheng J; Zhou S Bioinformatics; 2015 Jun; 31(12):i221-9. PubMed ID: 26072486 [TBL] [Abstract][Full Text] [Related]
2. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples. Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437 [TBL] [Abstract][Full Text] [Related]
3. Inverse similarity and reliable negative samples for drug side-effect prediction. Zheng Y; Peng H; Ghosh S; Lan C; Li J BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666 [TBL] [Abstract][Full Text] [Related]
4. Boosting compound-protein interaction prediction by deep learning. Tian K; Shao M; Wang Y; Guan J; Zhou S Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654 [TBL] [Abstract][Full Text] [Related]
5. Computational probing protein-protein interactions targeting small molecules. Wang YC; Chen SL; Deng NY; Wang Y Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726 [TBL] [Abstract][Full Text] [Related]
6. A general prediction model for compound-protein interactions based on deep learning. Ji W; She S; Qiao C; Feng Q; Rui M; Xu X; Feng C Front Pharmacol; 2024; 15():1465890. PubMed ID: 39295942 [TBL] [Abstract][Full Text] [Related]
7. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases. Zheng Y; Peng H; Zhang X; Zhao Z; Yin J; Li J BMC Bioinformatics; 2018 Dec; 19(Suppl 19):517. PubMed ID: 30598065 [TBL] [Abstract][Full Text] [Related]
8. Improving Compound-Protein Interaction Prediction by Self-Training with Augmenting Negative Samples. Koyama T; Matsumoto S; Iwata H; Kojima R; Okuno Y J Chem Inf Model; 2023 Aug; 63(15):4552-4559. PubMed ID: 37460105 [TBL] [Abstract][Full Text] [Related]
10. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures. Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672 [TBL] [Abstract][Full Text] [Related]
11. Predicting Drug-Target Interactions Based on Small Positive Samples. Hu P; Chan KCC; Hu Y Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343 [TBL] [Abstract][Full Text] [Related]
12. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Gönen M Bioinformatics; 2012 Sep; 28(18):2304-10. PubMed ID: 22730431 [TBL] [Abstract][Full Text] [Related]
13. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences. Huang YA; You ZH; Chen X Curr Protein Pept Sci; 2018; 19(5):468-478. PubMed ID: 27875970 [TBL] [Abstract][Full Text] [Related]
14. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
15. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. Nagamine N; Shirakawa T; Minato Y; Torii K; Kobayashi H; Imoto M; Sakakibara Y PLoS Comput Biol; 2009 Jun; 5(6):e1000397. PubMed ID: 19503826 [TBL] [Abstract][Full Text] [Related]
16. DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening. Wan F; Zhu Y; Hu H; Dai A; Cai X; Chen L; Gong H; Xia T; Yang D; Wang MW; Zeng J Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):478-495. PubMed ID: 32035227 [TBL] [Abstract][Full Text] [Related]
17. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Tsubaki M; Tomii K; Sese J Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330 [TBL] [Abstract][Full Text] [Related]
18. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Yuan Q; Gao J; Wu D; Zhang S; Mamitsuka H; Zhu S Bioinformatics; 2016 Jun; 32(12):i18-i27. PubMed ID: 27307615 [TBL] [Abstract][Full Text] [Related]
19. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information. Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479 [TBL] [Abstract][Full Text] [Related]
20. A deep learning method for predicting molecular properties and compound-protein interactions. Ma J; Zhang R; Li T; Jiang J; Zhao Z; Liu Y; Ma J J Mol Graph Model; 2022 Dec; 117():108283. PubMed ID: 35994925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]