These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26072511)

  • 21. The glpD gene is a novel reporter gene for E. coli that is superior to established reporter genes like lacZ and gusA.
    Wegener M; Vogtmann K; Huber M; Laass S; Soppa J
    J Microbiol Methods; 2016 Dec; 131():181-187. PubMed ID: 27794441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIRENE: supervised inference of regulatory networks.
    Mordelet F; Vert JP
    Bioinformatics; 2008 Aug; 24(16):i76-82. PubMed ID: 18689844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.
    Freyre-González JA; Alonso-Pavón JA; Treviño-Quintanilla LG; Collado-Vides J
    Genome Biol; 2008 Oct; 9(10):R154. PubMed ID: 18954463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generalized framework for network component analysis.
    Boscolo R; Sabatti C; Liao JC; Roychowdhury VP
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):289-301. PubMed ID: 17044167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics.
    Aijö T; Lähdesmäki H
    Bioinformatics; 2009 Nov; 25(22):2937-44. PubMed ID: 19706742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferring latent gene regulatory network kinetics.
    González J; Vujačić I; Wit E
    Stat Appl Genet Mol Biol; 2013 Mar; 12(1):109-27. PubMed ID: 23744300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulating the Properties of Metal-Sensing Whole-Cell Bioreporters by Interfering with
    Yoon Y; Kang Y; Lee W; Oh KC; Jang G; Kim BG
    J Microbiol Biotechnol; 2018 Feb; 28(2):323-329. PubMed ID: 29212299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the sfaX(II) locus in the Escherichia coli meningitis isolate IHE3034 reveals two novel regulatory genes within the promoter-distal region of the main S fimbrial operon.
    Sjöström AE; Sondén B; Müller C; Rydström A; Dobrindt U; Wai SN; Uhlin BE
    Microb Pathog; 2009 Mar; 46(3):150-8. PubMed ID: 19103276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ensemble learning of genetic networks from time-series expression data.
    Nam D; Yoon SH; Kim JF
    Bioinformatics; 2007 Dec; 23(23):3225-31. PubMed ID: 17977884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Open-Source High-Throughput Phenomics of Bacterial Promoter-Reporter Strains.
    French S; Coutts BE; Brown ED
    Cell Syst; 2018 Sep; 7(3):339-346.e3. PubMed ID: 30172841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition of an Anaerobic Escherichia coli Culture to Aerobiosis: Balancing mRNA and Protein Levels in a Demand-Directed Dynamic Flux Balance Analysis.
    von Wulffen J; ; Sawodny O; Feuer R
    PLoS One; 2016; 11(7):e0158711. PubMed ID: 27384956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution.
    Takenaka Y; Seno S; Matsuda H
    J Bioinform Comput Biol; 2015 Oct; 13(5):1543002. PubMed ID: 26508425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique.
    Hsiao YT; Lee WP
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S8. PubMed ID: 25474560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural systems identification of genetic regulatory networks.
    Xiong H; Choe Y
    Bioinformatics; 2008 Feb; 24(4):553-60. PubMed ID: 18175769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting hidden information interleaved in the redundancy of the genetic code without prior knowledge.
    Zur H; Tuller T
    Bioinformatics; 2015 Apr; 31(8):1161-8. PubMed ID: 25433697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data.
    Cinquemani E; Laroute V; Cocaign-Bousquet M; de Jong H; Ropers D
    Bioinformatics; 2017 Jul; 33(14):i301-i310. PubMed ID: 28881984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data.
    Zhang Y; Xie J; Yang J; Fennell A; Zhang C; Ma Q
    Bioinformatics; 2017 Feb; 33(3):450-452. PubMed ID: 28172469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information.
    Zhang X; Zhao XM; He K; Lu L; Cao Y; Liu J; Hao JK; Liu ZP; Chen L
    Bioinformatics; 2012 Jan; 28(1):98-104. PubMed ID: 22088843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. bLARS: An Algorithm to Infer Gene Regulatory Networks.
    Singh N; Vidyasagar M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.