These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
895 related articles for article (PubMed ID: 26072696)
1. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
2. Elevation and forest clearing effects on foraging differ between surface--and subterranean--foraging army ants (Formicidae: Ecitoninae). Kumar A; O'Donnell S J Anim Ecol; 2009 Jan; 78(1):91-7. PubMed ID: 19120597 [TBL] [Abstract][Full Text] [Related]
3. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
4. Critical thermal maxima in neotropical ants at colony, population, and community levels. Nascimento G; Câmara T; Arnan X Bull Entomol Res; 2024 Aug; 114(4):571-580. PubMed ID: 39308218 [TBL] [Abstract][Full Text] [Related]
5. The role of nest surface temperatures and the brain in influencing ant metabolic rates. Andrew NR; Ghaedi B; Groenewald B J Therm Biol; 2016 Aug; 60():132-9. PubMed ID: 27503725 [TBL] [Abstract][Full Text] [Related]
6. Complex body size differences in thermal tolerance among army ant workers (Eciton burchellii parvispinum). Baudier K; O'Donnell S J Therm Biol; 2018 Dec; 78():277-280. PubMed ID: 30509648 [TBL] [Abstract][Full Text] [Related]
7. Extreme Insolation: Climatic Variation Shapes the Evolution of Thermal Tolerance at Multiple Scales. Baudier KM; D'Amelio CL; Malhotra R; O'Connor MP; O'Donnell S Am Nat; 2018 Sep; 192(3):347-359. PubMed ID: 30125235 [TBL] [Abstract][Full Text] [Related]
8. Variation in thermal tolerance of North American ants. Verble-Pearson RM; Gifford ME; Yanoviak SP J Therm Biol; 2015 Feb; 48():65-8. PubMed ID: 25660632 [TBL] [Abstract][Full Text] [Related]
9. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Kaspari M; Clay NA; Lucas J; Yanoviak SP; Kay A Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246 [TBL] [Abstract][Full Text] [Related]
11. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related]
12. Seasonal plasticity of thermal tolerance in ants. Bujan J; Roeder KA; Yanoviak SP; Kaspari M Ecology; 2020 Jun; 101(6):e03051. PubMed ID: 32239508 [TBL] [Abstract][Full Text] [Related]
13. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
14. Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics. Nowrouzi S; Andersen AN; Bishop TR; Robson SKA Oecologia; 2018 Oct; 188(2):333-342. PubMed ID: 29736865 [TBL] [Abstract][Full Text] [Related]
15. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
16. Testing the reliability and ecological implications of ramping rates in the measurement of Critical Thermal maximum. Leong CM; Tsang TPN; Guénard B PLoS One; 2022; 17(3):e0265361. PubMed ID: 35286353 [TBL] [Abstract][Full Text] [Related]
17. Army ants in four forests: geographic variation in raid rates and species composition. O'Donnell S; Lattke J; Powell S; Kaspari M J Anim Ecol; 2007 May; 76(3):580-9. PubMed ID: 17439474 [TBL] [Abstract][Full Text] [Related]
18. The Thermal Breadth of Nylanderia fulva (Hymenoptera: Formicidae) Is Narrower Than That of Solenopsis invicta at Three Thermal Ramping Rates: 1.0, 0.12, and 0.06°C min-1. Bentley MT; Hahn DA; Oi FM Environ Entomol; 2016 Aug; 45(4):1058-62. PubMed ID: 27252409 [TBL] [Abstract][Full Text] [Related]
19. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115 [TBL] [Abstract][Full Text] [Related]
20. Turn up the heat: thermal tolerances of lizards at La Selva, Costa Rica. Brusch GA; Taylor EN; Whitfield SM Oecologia; 2016 Feb; 180(2):325-34. PubMed ID: 26466592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]