These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26072778)
1. Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method. Luo T; Wang Z; Ferrare RA; Hostetler CA; Yuan R; Zhang D Opt Express; 2015 Jun; 23(11):14095-107. PubMed ID: 26072778 [TBL] [Abstract][Full Text] [Related]
2. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. Papayannis A; Nicolae D; Kokkalis P; Binietoglou I; Talianu C; Belegante L; Tsaknakis G; Cazacu MM; Vetres I; Ilic L Sci Total Environ; 2014 Dec; 500-501():277-94. PubMed ID: 25226073 [TBL] [Abstract][Full Text] [Related]
3. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide. Noh Y; Müller D; Shin SK; Shin D; Kim YJ Chemosphere; 2016 Jan; 143():24-31. PubMed ID: 25937543 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional nature of summertime aerosols over South Asia. Singh A; Anchule A; Banerjee T; Aditi K; Mhawish A Sci Total Environ; 2022 Oct; 842():156834. PubMed ID: 35750188 [TBL] [Abstract][Full Text] [Related]
5. Vertical stratification of aerosols over South Asian cities. Banerjee T; Anchule A; Sorek-Hamer M; Latif MT Environ Pollut; 2022 Sep; 309():119776. PubMed ID: 35841987 [TBL] [Abstract][Full Text] [Related]
6. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
7. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements. Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490 [TBL] [Abstract][Full Text] [Related]
8. Study of atmospheric aerosols and mixing layer by LIDAR. Angelini F; Barnaba F; Landi TC; Caporaso L; Gobbi GP Radiat Prot Dosimetry; 2009 Dec; 137(3-4):275-9. PubMed ID: 19843545 [TBL] [Abstract][Full Text] [Related]
9. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
10. Rotational Raman lidar for obtaining aerosol scattering coefficients. Kim D; Cha H Opt Lett; 2005 Jul; 30(13):1728-30. PubMed ID: 16075552 [TBL] [Abstract][Full Text] [Related]
11. Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China. Zhu W; Xu C; Qian X; Wei H Opt Express; 2013 Feb; 21(3):2531-7. PubMed ID: 23481711 [TBL] [Abstract][Full Text] [Related]
12. Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region. Ge Y; Wu N; Abuduwaili J; Kulmatov R; Issanova G; Saparov G Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361020 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of elevated aerosol layer over the Indian east coast, Kattankulathur (12.82 Mehta SK; Ananthavel A; Velu V; Prabhakaran T; Pandithurai G; Rao DN Sci Total Environ; 2023 Aug; 886():163917. PubMed ID: 37164082 [TBL] [Abstract][Full Text] [Related]
14. Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. Müller D; Veselovskii I; Kolgotin A; Tesche M; Ansmann A; Dubovik O Appl Opt; 2013 May; 52(14):3178-202. PubMed ID: 23669830 [TBL] [Abstract][Full Text] [Related]
15. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations. Chen B; Yamada M; Iwasaka Y; Zhang D; Wang H; Wang Z; Lei H; Shi G Environ Geochem Health; 2015 Oct; 37(5):791-800. PubMed ID: 25537163 [TBL] [Abstract][Full Text] [Related]
16. [A floating-dust case study based on the vertical distribution of aerosol optical properties]. Wang Y; Deng JY; Shi LH; Chen YH; Zhang Q; Wang S; Xu TT Huan Jing Ke Xue; 2014 Mar; 35(3):830-8. PubMed ID: 24881367 [TBL] [Abstract][Full Text] [Related]
17. Canadian Biomass Burning Aerosol Properties Modification during a Long-Ranged Event on August 2018. Papanikolaou CA; Giannakaki E; Papayannis A; Mylonaki M; Soupiona O Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971973 [TBL] [Abstract][Full Text] [Related]
18. Scanning Lidar Measurements of the Full-Scale RDD Field Trial Puff Plumes. Cao X; Roy G Health Phys; 2016 May; 110(5):436-41. PubMed ID: 27023031 [TBL] [Abstract][Full Text] [Related]
19. Case study of a dust storm over Hyderabad area, India: its impact on solar radiation using satellite data and ground measurements. Badarinath KV; Kharol SK; Kaskaoutis DG; Kambezidis HD Sci Total Environ; 2007 Oct; 384(1-3):316-32. PubMed ID: 17599393 [TBL] [Abstract][Full Text] [Related]
20. Direct radiative forcing due to aerosols in Asia during March 2002. Park SU; Jeong JI Sci Total Environ; 2008 Dec; 407(1):394-404. PubMed ID: 18804844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]