These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26072778)
41. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. Huang Z; Shen X; Tang S; Zhou T; Dong Q; Zhang S; Li M; Wang Y Opt Express; 2023 Mar; 31(6):10541-10553. PubMed ID: 37157599 [TBL] [Abstract][Full Text] [Related]
42. Lidar Ratio-Depolarization Ratio Relations of Atmospheric Dust Aerosols: The Super-Spheroid Model and High Spectral Resolution Lidar Observations. Kong S; Sato K; Bi L J Geophys Res Atmos; 2022 Feb; 127(4):e2021JD035629. PubMed ID: 35865334 [TBL] [Abstract][Full Text] [Related]
43. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar. Xiao D; Wang N; Chen S; Wu L; Müller D; Veselovskii I; Li C; Landulfo E; Sivakumar V; Li J; Che H; Fang J; Zhang K; Wang B; Chen F; Hu X; Li X; Li W; Tong Y; Ke J; Wu L; Liu C; Liu D Sci Total Environ; 2023 May; 872():162091. PubMed ID: 36758704 [TBL] [Abstract][Full Text] [Related]
44. An Algorithm to retrieve aerosol properties from analysis of multiple scattering influences on both Ground-Based and Space-Borne Lidar Returns. Lu X; Jiang Y; Zhang X; Lu X; He Y Opt Express; 2009 May; 17(11):8719-28. PubMed ID: 19466120 [TBL] [Abstract][Full Text] [Related]
45. Estimates of Asian dust deposition over the Asian region by using ADAM2 in 2007. Park SU; Choe A; Park MS Sci Total Environ; 2010 May; 408(11):2347-56. PubMed ID: 20227107 [TBL] [Abstract][Full Text] [Related]
46. [Use of laser flow-type fluorescence aerosol particle counter to evaluate the concentration of microbes in the surface air under high dust content]. Kalinin IuT; Vorob'ev SA; Khramov EN; Vorob'eva EA; Kuznetsov AP; Kiselev OS Vestn Ross Akad Med Nauk; 2000; (10):16-9. PubMed ID: 11247120 [TBL] [Abstract][Full Text] [Related]
47. Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: application to absorbing aerosols. Brajard J; Jamet C; Moulin C; Thiria S Neural Netw; 2006 Mar; 19(2):178-85. PubMed ID: 16616185 [TBL] [Abstract][Full Text] [Related]
48. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences. Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803 [TBL] [Abstract][Full Text] [Related]
49. A new eye-safe lidar design for studying atmospheric aerosol distributions. Cao N; Zhou X; Li S; Chen Z Rev Sci Instrum; 2009 Mar; 80(3):035109. PubMed ID: 19334954 [TBL] [Abstract][Full Text] [Related]
50. Global estimate of aerosol direct radiative forcing from satellite measurements. Bellouin N; Boucher O; Haywood J; Reddy MS Nature; 2005 Dec; 438(7071):1138-41. PubMed ID: 16372005 [TBL] [Abstract][Full Text] [Related]
51. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. Jeong U; Kim J; Lee H; Jung J; Kim YJ; Song CH; Koo JH J Environ Monit; 2011 Jul; 13(7):1905-18. PubMed ID: 21603725 [TBL] [Abstract][Full Text] [Related]
52. Lidar system model for use with path obscurants and experimental validation. Giles JW; Bankman IN; Sova RM; Morgan TR; Duncan DD; Millard JA; Green WJ; Marcotte FJ Appl Opt; 2008 Aug; 47(22):4085-93. PubMed ID: 18670566 [TBL] [Abstract][Full Text] [Related]
54. Study of smoke aerosols under a controlled environment by using dynamic light scattering. Singh RP; Jaiswal VK; Jain VK Appl Opt; 2006 Apr; 45(10):2217-21. PubMed ID: 16607987 [TBL] [Abstract][Full Text] [Related]
55. Monitoring atmospheric particulate matters using vertically resolved measurements of a polarization lidar, in-situ recordings and satellite data over Tehran, Iran. Panahifar H; Moradhaseli R; Khalesifard HR Sci Rep; 2020 Nov; 10(1):20052. PubMed ID: 33208863 [TBL] [Abstract][Full Text] [Related]
56. Field testing of new aerosol sampling method with a porous curved surface as inlet. Hauck BC; Grinshpun SA; Reponen A; Reponen T; Willeke K; Bornschein RL Am Ind Hyg Assoc J; 1997 Oct; 58(10):713-9. PubMed ID: 9342831 [TBL] [Abstract][Full Text] [Related]
57. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements. Wang PH; McCormick MP; McMaster LR; Chu WP; Swissler TJ; Osborn MT; Russell PB; Oberbeck VR; Livingston J; Rosen JM; Hofmann DJ; Grams GW; Fuller WH; Yue GK J Geophys Res; 1989 Jun; 94(D6):8381-93. PubMed ID: 11539801 [TBL] [Abstract][Full Text] [Related]
58. Investigation of aerosol absorption with dual-polarization lidar observations. Huang Z; Qi S; Zhou T; Dong Q; Ma X; Zhang S; Bi J; Shi J Opt Express; 2020 Mar; 28(5):7028-7035. PubMed ID: 32225938 [TBL] [Abstract][Full Text] [Related]
59. Comparison of a sodium chloride aerosol filter test method to silica-dust and silica-mist filter test methods. Lowry PL; Revoir WH Am Ind Hyg Assoc J; 1978 Sep; 39(9):709-16. PubMed ID: 215024 [TBL] [Abstract][Full Text] [Related]
60. Exploring Global Land Coarse-Mode Aerosol Changes from 2001-2021 Using a New Spatiotemporal Coaction Deep-Learning Model. Zang Z; Zhang Y; Zuo C; Chen J; He B; Luo N; Zou J; Zhao W; Shi W; Yan X Environ Sci Technol; 2023 Dec; 57(48):19881-19890. PubMed ID: 37962866 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]