These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26072834)

  • 1. Deep frequency modulation interferometry.
    Gerberding O
    Opt Express; 2015 Jun; 23(11):14753-62. PubMed ID: 26072834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of deep frequency modulation interferometry.
    Isleif KS; Gerberding O; Schwarze TS; Mehmet M; Heinzel G; Cervantes FG
    Opt Express; 2016 Jan; 24(2):1676-84. PubMed ID: 26832546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Element Dual-Interferometer for Precision Inertial Sensing.
    Yang Y; Yamamoto K; Huarcaya V; Vorndamme C; Penkert D; Fernández Barranco G; Schwarze TS; Mehmet M; Esteban Delgado JJ; Jia J; Heinzel G; Dovale Álvarez M
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision.
    Gerberding O; Diekmann C; Kullmann J; Tröbs M; Bykov I; Barke S; Brause NC; Esteban Delgado JJ; Schwarze TS; Reiche J; Danzmann K; Rasmussen T; Hansen TV; Enggaard A; Pedersen SM; Jennrich O; Suess M; Sodnik Z; Heinzel G
    Rev Sci Instrum; 2015 Jul; 86(7):074501. PubMed ID: 26233398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A construction method of the quasi-monolithic compact interferometer based on UV-adhesive bonding.
    Lin X; Yan H; Ma Y; Zhou Z
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37470703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytic, efficient and optimal readout algorithm for compact interferometers based on deep frequency modulation.
    Eckhardt T; Gerberding O
    Sci Rep; 2024 Sep; 14(1):21988. PubMed ID: 39313497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Element Dual-Interferometer for Precision Inertial Sensing: Sub-Picometer Structural Stability and Performance as a Reference for Laser Frequency Stabilization.
    Huarcaya V; Dovale Álvarez M; Yamamoto K; Yang Y; Gozzo S; Martínez Cano P; Mehmet M; Esteban Delgado JJ; Jia J; Heinzel G
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ghost Beam Suppression in Deep Frequency Modulation Interferometry for Compact On-Axis Optical Heads.
    Gerberding O; Isleif KS
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters.
    Hsu MT; Littler IC; Shaddock DA; Herrmann J; Warrington RB; Gray MB
    Opt Lett; 2010 Dec; 35(24):4202-4. PubMed ID: 21165137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transponder-type laser interferometer prototype for spaceborne gravitational wave detectors.
    Mu H; Xu X; Le T; Tan Y; Wei H; Li Y
    Appl Opt; 2024 Feb; 63(4):1032-1038. PubMed ID: 38437401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interferometer techniques for gravitational-wave detection.
    Bond C; Brown D; Freise A; Strain KA
    Living Rev Relativ; 2016; 19(1):3. PubMed ID: 28260967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New method for gravitational wave detection with atomic sensors.
    Graham PW; Hogan JM; Kasevich MA; Rajendran S
    Phys Rev Lett; 2013 Apr; 110(17):171102. PubMed ID: 23679702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry.
    Müller-Ebhardt H; Rehbein H; Schnabel R; Danzmann K; Chen Y
    Phys Rev Lett; 2008 Jan; 100(1):013601. PubMed ID: 18232758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balanced homodyne readout for quantum limited gravitational wave detectors.
    Fritschel P; Evans M; Frolov V
    Opt Express; 2014 Feb; 22(4):4224-34. PubMed ID: 24663746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highspeed multiplexed heterodyne interferometry.
    Isleif KS; Gerberding O; Köhlenbeck S; Sutton A; Sheard B; Goßler S; Shaddock D; Heinzel G; Danzmann K
    Opt Express; 2014 Oct; 22(20):24689-96. PubMed ID: 25322043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.
    Kwee P; Bogan C; Danzmann K; Frede M; Kim H; King P; Pöld J; Puncken O; Savage RL; Seifert F; Wessels P; Winkelmann L; Willke B
    Opt Express; 2012 May; 20(10):10617-34. PubMed ID: 22565688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry.
    Jiang YZ; Jin XL; Yeh HC; Liang YR
    Opt Express; 2021 Jun; 29(12):18336-18350. PubMed ID: 34154092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency stabilization for space-based missions using optical fiber interferometry.
    McRae TG; Ngo S; Shaddock DA; Hsu MT; Gray MB
    Opt Lett; 2013 Feb; 38(3):278-80. PubMed ID: 23381410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verification of polarising optics for the LISA optical bench.
    Dehne M; Tröbs M; Heinzel G; Danzmann K
    Opt Express; 2012 Dec; 20(25):27273-87. PubMed ID: 23262677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.