These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26072895)
1. Reconstruction of hyperspectral reflectance for optically complex turbid inland lakes: test of a new scheme and implications for inversion algorithms. Sun D; Hu C; Qiu Z; Wang S Opt Express; 2015 Jun; 23(11):A718-40. PubMed ID: 26072895 [TBL] [Abstract][Full Text] [Related]
2. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes. Xue K; Boss E; Ma R; Shen M Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359 [TBL] [Abstract][Full Text] [Related]
3. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors. Lee Z; Shang S; Hu C; Zibordi G Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219 [TBL] [Abstract][Full Text] [Related]
4. Spectral correlation in MODIS water-leaving reflectance retrieval uncertainty. Zhang M; Ibrahim A; Franz BA; Sayer AM; Werdell PJ; McKinna LI Opt Express; 2024 Jan; 32(2):2490-2506. PubMed ID: 38297777 [TBL] [Abstract][Full Text] [Related]
5. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters. Karthick M; Shanmugam P; He X Opt Express; 2024 Feb; 32(5):7659-7681. PubMed ID: 38439443 [TBL] [Abstract][Full Text] [Related]
6. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay. Le C; Hu C Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799 [TBL] [Abstract][Full Text] [Related]
7. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application]. Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276 [TBL] [Abstract][Full Text] [Related]
8. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758 [TBL] [Abstract][Full Text] [Related]
9. Remote estimation of phycocyanin concentration in inland waters based on optical classification. Lyu L; Song K; Wen Z; Liu G; Fang C; Shang Y; Li S; Tao H; Wang X; Li Y; Wang X Sci Total Environ; 2023 Nov; 899():166363. PubMed ID: 37598955 [TBL] [Abstract][Full Text] [Related]
10. Remote sensing estimation of colored dissolved organic matter (CDOM) from GOCI measurements in the Bohai Sea and Yellow Sea. Ling Z; Sun D; Wang S; Qiu Z; Huan Y; Mao Z; He Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):6872-6885. PubMed ID: 31875926 [TBL] [Abstract][Full Text] [Related]
11. Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Craig SE; Lohrenz SE; Lee Z; Mahoney KL; Kirkpatrick GJ; Schofield OM; Steward RG Appl Opt; 2006 Jul; 45(21):5414-25. PubMed ID: 16826278 [TBL] [Abstract][Full Text] [Related]
12. A semi-analytical model for estimating total suspended matter in highly turbid waters. Zhang Y; Shi K; Zhang Y; Moreno-Madrinan MJ; Li Y; Li N Opt Express; 2018 Dec; 26(26):34094-34112. PubMed ID: 30650838 [TBL] [Abstract][Full Text] [Related]
13. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
14. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Hu M; Zhang Y; Ma R; Xue K; Cao Z; Chu Q; Jing Y Sci Total Environ; 2021 Jun; 771():144811. PubMed ID: 33545474 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542 [TBL] [Abstract][Full Text] [Related]
16. Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient. Lin J; Lee Z; Ondrusek M; Liu X Opt Express; 2018 Jan; 26(2):A157-A177. PubMed ID: 29401972 [TBL] [Abstract][Full Text] [Related]
17. Optical classification of an urbanized estuary using hyperspectral remote sensing reflectance. Turner KJ; Tzortziou M; Grunert BK; Goes J; Sherman J Opt Express; 2022 Nov; 30(23):41590-41612. PubMed ID: 36366633 [TBL] [Abstract][Full Text] [Related]
18. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320 [TBL] [Abstract][Full Text] [Related]
19. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Wang X; Gong Z; Pu R Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190 [TBL] [Abstract][Full Text] [Related]
20. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties. Al Shehhi MR; Gherboudj I; Ghedira H J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]