BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26073205)

  • 1. Approach on environmental risk assessment of nanosilver released from textiles.
    Voelker D; Schlich K; Hohndorf L; Koch W; Kuehnen U; Polleichtner C; Kussatz C; Hund-Rinke K
    Environ Res; 2015 Jul; 140():661-72. PubMed ID: 26073205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles.
    Blaser SA; Scheringer M; Macleod M; Hungerbühler K
    Sci Total Environ; 2008 Feb; 390(2-3):396-409. PubMed ID: 18031795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicity and fate of silver nanomaterial in an outdoor lysimeter study after twofold application by sewage sludge.
    Hoppe M; Köser J; Hund-Rinke K; Schlich K
    Ecotoxicology; 2022 Apr; 31(3):524-535. PubMed ID: 35262834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study.
    Schlich K; Hoppe M; Kraas M; Fries E; Hund-Rinke K
    Ecotoxicology; 2017 Aug; 26(6):738-751. PubMed ID: 28547324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants.
    Schlich K; Hoppe M; Kraas M; Schubert J; Chanana M; Hund-Rinke K
    Environ Pollut; 2018 Nov; 242(Pt B):1850-1859. PubMed ID: 30061083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behavior of silver nanotextiles during washing.
    Geranio L; Heuberger M; Nowack B
    Environ Sci Technol; 2009 Nov; 43(21):8113-8. PubMed ID: 19924931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles.
    Reed RB; Zaikova T; Barber A; Simonich M; Lankone R; Marco M; Hristovski K; Herckes P; Passantino L; Fairbrother DH; Tanguay R; Ranville JF; Hutchison JE; Westerhoff PK
    Environ Sci Technol; 2016 Apr; 50(7):4018-26. PubMed ID: 26927927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention of sterically and electrosterically stabilized silver nanoparticles in soils.
    Hoppe M; Mikutta R; Utermann J; Duijnisveld W; Guggenberger G
    Environ Sci Technol; 2014 Nov; 48(21):12628-35. PubMed ID: 25251386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An environmental risk assessment for oseltamivir (Tamiflu) for sewage works and surface waters under seasonal-influenza- and pandemic-use conditions.
    Straub JO
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1625-34. PubMed ID: 19560203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial response to a shock load of nanosilver in an activated sludge treatment system.
    Liang Z; Das A; Hu Z
    Water Res; 2010 Oct; 44(18):5432-8. PubMed ID: 20638703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles.
    Mitrano DM; Rimmele E; Wichser A; Erni R; Height M; Nowack B
    ACS Nano; 2014 Jul; 8(7):7208-19. PubMed ID: 24941455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental risk assessment of musk ketone and musk xylene in The Netherlands in accordance with the EU-TGD.
    Tas JW; Balk F; Ford RA; van de Plassche EJ
    Chemosphere; 1997 Dec; 35(12):2973-3002. PubMed ID: 9415982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental Risk Assessment for the Active Pharmaceutical Ingredient Mycophenolic Acid in European Surface Waters.
    Straub JO; Oldenkamp R; Pfister T; Häner A
    Environ Toxicol Chem; 2019 Oct; 38(10):2259-2278. PubMed ID: 31225916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental risk assessment of hydrotropes in the United States, Europe, and Australia.
    Stanton K; Tibazarwa C; Certa H; Greggs W; Hillebold D; Jovanovich L; Woltering D; Sedlak R
    Integr Environ Assess Manag; 2010 Jan; 6(1):155-63. PubMed ID: 19558203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosilver: a nanoproduct in medical application.
    Chen X; Schluesener HJ
    Toxicol Lett; 2008 Jan; 176(1):1-12. PubMed ID: 18022772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.
    Johnson AC; Jürgens MD; Lawlor AJ; Cisowska I; Williams RJ
    Chemosphere; 2014 Oct; 112():49-55. PubMed ID: 25048887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment.
    Whiteley CM; Dalla Valle M; Jones KC; Sweetman AJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2050-8. PubMed ID: 24056694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental risk assessment for ancillary substances in biotechnological production of pharmaceuticals.
    Straub JO; Gysel D; Kastl U; Klemmer J; Sonderegger M; Studer M
    Environ Toxicol Chem; 2012 Mar; 31(3):681-7. PubMed ID: 22189954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of nanosilver on polyamide fabric using silver/ammonia complex.
    Montazer M; Shamei A; Alimohammadi F
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():170-6. PubMed ID: 24656365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.