BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 26073313)

  • 1. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.
    Treebupachatsakul T; Shioya K; Nakazawa H; Kawaguchi T; Morikawa Y; Shida Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2015 Dec; 120(6):657-65. PubMed ID: 26026380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.
    Wickramasinghe GHIM; Rathnayake PPAMSI; Chandrasekharan NV; Weerasinghe MSS; Wijesundera RLC; Wijesundera WSS
    BMC Microbiol; 2017 Jun; 17(1):137. PubMed ID: 28637443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation.
    Tang H; Hou J; Shen Y; Xu L; Yang H; Fang X; Bao X
    J Microbiol Biotechnol; 2013 Nov; 23(11):1577-85. PubMed ID: 23928840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse.
    Baba Y; Sumitani JI; Tanaka K; Tani S; Kawaguchi T
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10495-10507. PubMed ID: 27444432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion.
    Nakazawa H; Kawai T; Ida N; Shida Y; Kobayashi Y; Okada H; Tani S; Sumitani J; Kawaguchi T; Morikawa Y; Ogasawara W
    Biotechnol Bioeng; 2012 Jan; 109(1):92-9. PubMed ID: 21830204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J; Kricka W; James TC; Bond U
    J Appl Microbiol; 2014 Jul; 117(1):96-108. PubMed ID: 24666670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw.
    Dashtban M; Qin W
    Microb Cell Fact; 2012 May; 11():63. PubMed ID: 22607229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of cellulolytic enzyme components through engineering
    Li YH; Zhang XY; Zhang F; Peng LC; Zhang DB; Kondo A; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2018; 11():49. PubMed ID: 29483942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme.
    Fujita Y; Ito J; Ueda M; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Feb; 70(2):1207-12. PubMed ID: 14766607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production from cellulosic materials using cellulase-expressing yeast.
    Yanase S; Yamada R; Kaneko S; Noda H; Hasunuma T; Tanaka T; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2010 May; 5(5):449-55. PubMed ID: 20349451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain.
    Casa-Villegas M; Marín-Navarro J; Polaina J
    World J Microbiol Biotechnol; 2017 Jul; 33(7):140. PubMed ID: 28589508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1.
    Gong Y; Tang G; Wang M; Li J; Xiao W; Lin J; Liu Z
    J Gen Appl Microbiol; 2014; 60(5):198-206. PubMed ID: 25420425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulosic ethanol production by combination of cellulase-displaying yeast cells.
    Baek SH; Kim S; Lee K; Lee JK; Hahn JS
    Enzyme Microb Technol; 2012 Dec; 51(6-7):366-72. PubMed ID: 23040393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast.
    Hari Krishna S; Janardhan Reddy T; Chowdary GV
    Bioresour Technol; 2001 Apr; 77(2):193-6. PubMed ID: 11272027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.