These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26073429)
21. Preparation and characterization of 1,3-dioleoyl-2-palmitoylglycerol. Qin XL; Wang YM; Wang YH; Huang HH; Yang B J Agric Food Chem; 2011 May; 59(10):5714-9. PubMed ID: 21510711 [TBL] [Abstract][Full Text] [Related]
22. Precolumn Derivatization with Bromine to Improve Separation and Detection Sensitivity of Triacylglycerols in Edible Oil by Reversed-Phase High Performance Liquid Chromatography. Shan XL; Liu XT; Gong C; Xu X Anal Sci; 2018; 34(3):283-289. PubMed ID: 29526894 [TBL] [Abstract][Full Text] [Related]
23. Quantitative determination of major oxidation products in edible oils by direct NP-HPLC-DAD analysis. Velasco J; Morales-Barroso A; Ruiz-Méndez MV; Márquez-Ruiz G J Chromatogr A; 2018 Apr; 1547():62-70. PubMed ID: 29559268 [TBL] [Abstract][Full Text] [Related]
24. Digestion of Medium- and Long-Chain Triacylglycerol and Wang L; Zhang X; Yuan T; Jin Q; Wei W; Wang X J Agric Food Chem; 2022 Mar; 70(10):3263-3271. PubMed ID: 35255218 [TBL] [Abstract][Full Text] [Related]
25. Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column. Nagai T; Mizobe H; Otake I; Ichioka K; Kojima K; Matsumoto Y; Gotoh N; Kuroda I; Wada S J Chromatogr A; 2011 May; 1218(20):2880-6. PubMed ID: 21429494 [TBL] [Abstract][Full Text] [Related]
26. Comprehensive two-dimensional liquid chromatography with evaporative light-scattering detection for the analysis of triacylglycerols in Borago officinalis. Mondello L; Beccaria M; Donato P; Cacciola F; Dugo G; Dugo P J Sep Sci; 2011 Mar; 34(6):688-92. PubMed ID: 21413146 [TBL] [Abstract][Full Text] [Related]
27. Study of the analysis of alkoxyglycerols and other non-polar lipids by liquid chromatography coupled with evaporative light scattering detector. Torres CF; Vázquez L; Señoráns FJ; Reglero G J Chromatogr A; 2005 Jun; 1078(1-2):28-34. PubMed ID: 16007978 [TBL] [Abstract][Full Text] [Related]
30. The stereospecific triacylglycerol structures and Fatty Acid profiles of human milk and infant formulas. Straarup EM; Lauritzen L; Faerk J; Høy Deceased CE; Michaelsen KF J Pediatr Gastroenterol Nutr; 2006 Mar; 42(3):293-9. PubMed ID: 16540799 [TBL] [Abstract][Full Text] [Related]
31. Characterization and quantification of triacylglycerols in peanut oil by off-line comprehensive two-dimensional liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. Hu J; Wei F; Dong XY; Lv X; Jiang ML; Li GM; Chen H J Sep Sci; 2013 Jan; 36(2):288-300. PubMed ID: 23203907 [TBL] [Abstract][Full Text] [Related]
32. Human Milk sn-2 Palmitate Triglyceride Rich in Linoleic Acid Had Lower Digestibility but Higher Absorptivity Compared with the sn-2 Palmitate Triglyceride Rich in Oleic Acid in Vitro. Zhang N; Zeng JP; Wu YP; Wei M; Zhang H; Zheng L; Deng ZY; Li J J Agric Food Chem; 2021 Aug; 69(32):9137-9146. PubMed ID: 33337143 [TBL] [Abstract][Full Text] [Related]
33. Profiling of triacylglycerols in plant oils by high-performance liquid chromatography-atmosphere pressure chemical ionization mass spectrometry using a novel mixed-mode column. Hu N; Wei F; Lv X; Wu L; Dong XY; Chen H J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Dec; 972():65-72. PubMed ID: 25444539 [TBL] [Abstract][Full Text] [Related]
34. A novel HPLC-ESI-Q-ToF approach for the determination of fatty acids and acylglycerols in food samples. La Nasa J; Degano I; Brandolini L; Modugno F; Bonaduce I Anal Chim Acta; 2018 Jul; 1013():98-109. PubMed ID: 29501097 [TBL] [Abstract][Full Text] [Related]
35. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry. Wei F; Ji SX; Hu N; Lv X; Dong XY; Feng YQ; Chen H J Chromatogr A; 2013 Oct; 1312():69-79. PubMed ID: 24034135 [TBL] [Abstract][Full Text] [Related]
36. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column. Wei F; Hu N; Lv X; Dong XY; Chen H J Chromatogr A; 2015 Jul; 1404():60-71. PubMed ID: 26070817 [TBL] [Abstract][Full Text] [Related]
37. Optimization and comparison of GC-FID and HPLC-ELSD methods for determination of lauric acid, mono-, di-, and trilaurins in modified coconut oil. Ponphaiboon J; Limmatvapirat S; Chaidedgumjorn A; Limmatvapirat C J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():110-116. PubMed ID: 30265940 [TBL] [Abstract][Full Text] [Related]
38. Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts. Herrera LC; Potvin MA; Melanson JE Rapid Commun Mass Spectrom; 2010 Sep; 24(18):2745-52. PubMed ID: 20814981 [TBL] [Abstract][Full Text] [Related]
39. Rapid analysis of triacylglycerols using high-performance liquid chromatography with light scattering detection. Palmer AJ; Palmer FJ J Chromatogr; 1989 Mar; 465(2):369-77. PubMed ID: 2745605 [TBL] [Abstract][Full Text] [Related]
40. Comparison of Peak-area Ratios and Percentage Peak Area Derived from HPLC-evaporative Light Scattering and Refractive Index Detectors for Palm Oil and its Fractions. Ping BTY; Aziz HA; Idris Z J Oleo Sci; 2018; 67(3):265-272. PubMed ID: 29491321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]