These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26073800)

  • 1. Premature aging in bone of fish from a highly polluted marine area.
    Scopelliti G; Di Leonardo R; Tramati CD; Mazzola A; Vizzini S
    Mar Pollut Bull; 2015 Aug; 97(1-2):333-341. PubMed ID: 26073800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies the alterations of biochemical and mineral contents in bone tissue of mus musculus due to aluminum toxicity and the protective action of desferrioxamine and deferiprone by FTIR, ICP-OES, SEM and XRD techniques.
    Sivakumar S; Khatiwada CP; Sivasubramanian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():59-67. PubMed ID: 24583473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury in fishes from Augusta Bay (southern Italy): risk assessment and health implication.
    Bonsignore M; Salvagio Manta D; Oliveri E; Sprovieri M; Basilone G; Bonanno A; Falco F; Traina A; Mazzola S
    Food Chem Toxicol; 2013 Jun; 56():184-94. PubMed ID: 23485481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral maturity and crystallinity index are distinct characteristics of bone mineral.
    Farlay D; Panczer G; Rey C; Delmas PD; Boivin G
    J Bone Miner Metab; 2010 Jul; 28(4):433-45. PubMed ID: 20091325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite.
    Taylor EA; Mileti CJ; Ganesan S; Kim JH; Donnelly E
    Calcif Tissue Int; 2021 Jul; 109(1):77-91. PubMed ID: 33710382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice.
    Camacho NP; Carroll P; Raggio CL
    Calcif Tissue Int; 2003 May; 72(5):604-9. PubMed ID: 12574874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validated Approaches for Quantification of Bone Mineral Crystallinity Using Transmission Fourier Transform Infrared (FT-IR), Attenuated Total Reflection (ATR) FT-IR, and Raman Spectroscopy.
    Querido W; Ailavajhala R; Padalkar M; Pleshko N
    Appl Spectrosc; 2018 Nov; 72(11):1581-1593. PubMed ID: 29972319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sea-air exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion flux.
    Bagnato E; Sproveri M; Barra M; Bitetto M; Bonsignore M; Calabrese S; Di Stefano V; Oliveri E; Parello F; Mazzola S
    Chemosphere; 2013 Nov; 93(9):2024-32. PubMed ID: 23932146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing mercury pathways in Augusta Bay (southern Italy) by total concentration and isotope determination.
    Bonsignore M; Tamburrino S; Oliveri E; Marchetti A; Durante C; Berni A; Quinci E; Sprovieri M
    Environ Pollut; 2015 Oct; 205():178-85. PubMed ID: 26074159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrazine based deproteination protocol on bone mineral crystal structure.
    Karampas IA; Orkoula MG; Kontoyannis CG
    J Mater Sci Mater Med; 2012 May; 23(5):1139-48. PubMed ID: 22389100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diet and habitat use influence Hg and Cd transfer to fish and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea).
    Signa G; Mazzola A; Tramati CD; Vizzini S
    Environ Pollut; 2017 Nov; 230():394-404. PubMed ID: 28675849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced chemical and spatial recognition of fish bones in surimi by Tri-step infrared spectroscopy and infrared microspectroscopic imaging.
    Wei W; Yan Y; Zhang XP; Liu Y; Lu Y; Shi WZ; Xu CH
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():186-192. PubMed ID: 30015024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly contaminated areas as sources of pollution for adjoining ecosystems: The case of Augusta Bay (Central Mediterranean).
    Di Leonardo R; Mazzola A; Tramati CD; Vaccaro A; Vizzini S
    Mar Pollut Bull; 2014 Dec; 89(1-2):417-426. PubMed ID: 25455379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of in ovo exposure to PCBs and Hg on Clapper Rail bone mineral chemistry from a contaminated salt marsh in coastal Georgia.
    Rodriguez-Navarro AB; Romanek CS; Alvarez-Lloret P; Gaines KF
    Environ Sci Technol; 2006 Aug; 40(16):4936-42. PubMed ID: 16955889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of hydroxyapatite from animal bones.
    Sobczak A; Kowalski Z; Wzorek Z
    Acta Bioeng Biomech; 2009; 11(4):23-8. PubMed ID: 20405812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.