These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26073806)

  • 21. Construction of efficient CdS-TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes.
    Kalanur SS; Hwang YJ; Joo OS
    J Colloid Interface Sci; 2013 Jul; 402():94-9. PubMed ID: 23647694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability.
    Xian J; Li D; Chen J; Li X; He M; Shao Y; Yu L; Fang J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13157-66. PubMed ID: 25058472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-CdS nanocomposites: facile one-step synthesis and enhanced photoelectrochemical cytosensing.
    Zhao X; Zhou S; Jiang LP; Hou W; Shen Q; Zhu JJ
    Chemistry; 2012 Apr; 18(16):4974-81. PubMed ID: 22407750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid phase deposition of hemoglobin/SDS/TiO2 hybrid film preserving photoelectrochemical activity.
    Wang R; Zhang J; Hu Y
    Bioelectrochemistry; 2011 Apr; 81(1):34-8. PubMed ID: 21334986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol.
    Liu Q; Wang K; Huan J; Zhu G; Qian J; Mao H; Cai J
    Analyst; 2014 Jun; 139(11):2912-8. PubMed ID: 24740492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene-Amplified Photoelectric Response of CdS Nanoparticles for Cu
    Zhang Q; Yang P; Shen J; Yu J
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7871-7878. PubMed ID: 31196302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile approaching hierarchical CdS films as electrode toward photoelectrochemical water splitting.
    Guo X; Zhu J; Wei H; Lee ST; Li Y; Tang J
    Nanotechnology; 2015 Jan; 26(1):015203. PubMed ID: 25493339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dots and p-phenylenediamine based method for the sensitive determination of glucose.
    Lv X; Wang X; Huang D; Niu C; Zeng G; Niu Q
    Talanta; 2014 Nov; 129():20-5. PubMed ID: 25127560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene and CdS nanocomposite: a facile interface for construction of DNA-based electrochemical biosensor and its application to the determination of phenformin.
    Zeng L; Wang R; Zhu L; Zhang J
    Colloids Surf B Biointerfaces; 2013 Oct; 110():8-14. PubMed ID: 23693034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.
    Dong Y; Rossi D; Parobek D; Son DH
    Chemphyschem; 2016 Mar; 17(5):660-4. PubMed ID: 26807659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth.
    Wang Y; Wang F; He J
    Nanoscale; 2013 Nov; 5(22):11291-7. PubMed ID: 24096940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amperometric sensor based on tricobalt tetroxide nanoparticles-graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine.
    Jiang L; Gu S; Ding Y; Ye D; Zhang Z; Zhang F
    Colloids Surf B Biointerfaces; 2013 Jul; 107():146-51. PubMed ID: 23475062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots.
    Lian HT; Liu B; Chen YP; Sun XY
    Anal Biochem; 2012 Jul; 426(1):40-6. PubMed ID: 22484037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water.
    Chen Z; Liu S; Yang MQ; Xu YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4309-19. PubMed ID: 23646877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation.
    Zhang J; Zhu W; Liu X
    Dalton Trans; 2014 Jun; 43(24):9296-302. PubMed ID: 24819860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos.
    Wang P; Dai W; Ge L; Yan M; Ge S; Yu J
    Analyst; 2013 Feb; 138(3):939-45. PubMed ID: 23232561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of reduced graphene oxide in the critical components of a CdS-sensitized TiO2 -based photoelectrochemical cell.
    Selvaraj J; Gupta S; DelaCruz S; Subramanian VR
    Chemphyschem; 2014 Jul; 15(10):2010-8. PubMed ID: 24976600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical measurements of a heterosupramolecular system under visible light irradiation.
    Wilson GJ; Will GD
    Photochem Photobiol Sci; 2005 Aug; 4(8):602-8. PubMed ID: 16052266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites.
    Shangguan L; Zhu W; Xue Y; Liu S
    Biosens Bioelectron; 2015 Feb; 64():611-7. PubMed ID: 25314620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential.
    Zeng X; Bao J; Han M; Tu W; Dai Z
    Biosens Bioelectron; 2014 Apr; 54():331-8. PubMed ID: 24291752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.