These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26073884)

  • 1. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.
    Kim SJ; Yokokawa R; Lesher-Perez SC; Takayama S
    Nat Commun; 2015 Jun; 6():7301. PubMed ID: 26073884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity-driven preprogrammed microfluidic recirculation system for parallel biosensing of cell behaviors.
    Boonyaphon K; Li Z; Kim SJ
    Anal Chim Acta; 2022 Nov; 1233():340456. PubMed ID: 36283774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets.
    Dang VB; Kim SJ
    Lab Chip; 2017 Jan; 17(2):286-292. PubMed ID: 28001158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture.
    Lee DW; Choi N; Sung JH
    Biotechnol Prog; 2019 Jan; 35(1):e2701. PubMed ID: 30294886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems.
    Wang YI; Shuler ML
    Lab Chip; 2018 Aug; 18(17):2563-2574. PubMed ID: 30046784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.
    Wang YX; Xiang C; Liu B; Zhu Y; Luan Y; Liu ST; Qin KR
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):154. PubMed ID: 28155716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
    Lam RH; Sun Y; Chen W; Fu J
    Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow.
    Rossi M; Lindken R; Hierck BP; Westerweel J
    Lab Chip; 2009 May; 9(10):1403-11. PubMed ID: 19417907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests.
    Morier P; Vollet C; Michel PE; Reymond F; Rossier JS
    Electrophoresis; 2004 Nov; 25(21-22):3761-8. PubMed ID: 15565685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-controlled microcirculatory support system for endothelial cell culture and shearing.
    Song JW; Gu W; Futai N; Warner KA; Nor JE; Takayama S
    Anal Chem; 2005 Jul; 77(13):3993-9. PubMed ID: 15987102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers.
    Feneberg W; Aepfelbacher M; Sackmann E
    Biophys J; 2004 Aug; 87(2):1338-50. PubMed ID: 15298936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for shear stress sensing and transmission in vascular endothelial cells.
    Mazzag BM; Tamaresis JS; Barakat AI
    Biophys J; 2003 Jun; 84(6):4087-101. PubMed ID: 12770912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations.
    Chin LK; Yu JQ; Fu Y; Yu T; Liu AQ; Luo KQ
    Lab Chip; 2011 Jun; 11(11):1856-63. PubMed ID: 21373653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pumpless perfusion cell culture cap with two parallel channel layers keeping the flow rate constant.
    Lee DW; Yi SH; Ku B; Kim J
    Biotechnol Prog; 2012; 28(6):1466-71. PubMed ID: 22927366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression of endothelial cells under pulsatile non-reversing vs. steady shear stress; comparison of nitric oxide production.
    Yee A; Bosworth KA; Conway DE; Eskin SG; McIntire LV
    Ann Biomed Eng; 2008 Apr; 36(4):571-9. PubMed ID: 18256937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal beads from gravity-driven microfluidics.
    Gu H; Rong F; Tang B; Zhao Y; Fu D; Gu Z
    Langmuir; 2013 Jun; 29(25):7576-82. PubMed ID: 23718690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.