These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26073884)

  • 21. Cardiac-like flow generator for long-term imaging of endothelial cell responses to circulatory pulsatile flow at microscale.
    Chen H; Cornwell J; Zhang H; Lim T; Resurreccion R; Port T; Rosengarten G; Nordon RE
    Lab Chip; 2013 Aug; 13(15):2999-3007. PubMed ID: 23727941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pneumatic oscillator circuits for timing and control of integrated microfluidics.
    Duncan PN; Nguyen TV; Hui EE
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18104-9. PubMed ID: 24145429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic simulation of cell docking in microfluidic channels with different dam structures.
    Yang J; Li CW; Yang M
    Lab Chip; 2004 Feb; 4(1):53-9. PubMed ID: 15007441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capacitive coupling synchronizes autonomous microfluidic oscillators.
    Lesher-Pérez SC; Zhang C; Takayama S
    Electrophoresis; 2018 Apr; 39(8):1096-1103. PubMed ID: 29383730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unusual transduction response of progenitor-derived and mature endothelial cells exposed to laminar pulsatile shear stress.
    Daculsi R; Grellier M; Rémy M; Bareille R; Pierron D; Fernandez P; Bordenave L
    J Biomech; 2008 Aug; 41(12):2781-5. PubMed ID: 18621377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS; Arts T; Hoeks AP
    J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishment of a microcarrier culture system with serial sub-cultivation for functionally active human endothelial cells.
    Tashiro S; Tsumoto K; Sano E
    J Biotechnol; 2012 Aug; 160(3-4):202-13. PubMed ID: 22465290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential response of endothelial cells to simvastatin when conditioned with steady, non-reversing pulsatile or oscillating shear stress.
    Rossi J; Jonak P; Rouleau L; Danielczak L; Tardif JC; Leask RL
    Ann Biomed Eng; 2011 Jan; 39(1):402-13. PubMed ID: 20737288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.
    Damiri HS; Bardaweel HK
    Lab Chip; 2015 Nov; 15(21):4187-96. PubMed ID: 26351133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Normal and shear stresses influence the spatial distribution of intracellular adhesion molecule-1 expression in human umbilical vein endothelial cells exposed to sudden expansion flow.
    McKinney VZ; Rinker KD; Truskey GA
    J Biomech; 2006; 39(5):806-17. PubMed ID: 16488220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next-generation integrated microfluidic circuits.
    Mosadegh B; Bersano-Begey T; Park JY; Burns MA; Takayama S
    Lab Chip; 2011 Sep; 11(17):2813-8. PubMed ID: 21799977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments.
    Kang YJ; Yang S
    Lab Chip; 2012 Apr; 12(10):1881-9. PubMed ID: 22437280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts.
    Kou S; Pan L; van Noort D; Meng G; Wu X; Sun H; Xu J; Lee I
    Biochem Biophys Res Commun; 2011 May; 408(2):350-5. PubMed ID: 21514277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.
    Li L; Lv X; Ostrovidov S; Shi X; Zhang N; Liu J
    Mol Pharm; 2014 Jul; 11(7):2009-15. PubMed ID: 24673554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human brain microvascular endothelial cells resist elongation due to shear stress.
    Reinitz A; DeStefano J; Ye M; Wong AD; Searson PC
    Microvasc Res; 2015 May; 99():8-18. PubMed ID: 25725258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic system for precisely reproducing physiological blood pressure and wall shear stress to endothelial cells.
    Na JT; Hu SY; Xue CD; Wang YX; Chen KJ; Li YJ; Wang Y; Qin KR
    Analyst; 2021 Sep; 146(19):5913-5922. PubMed ID: 34570848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.